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Executive Summary 

This report is an official deliverable of H2020-GA-863876 FLEXGRID project dealing with the 
detailed architecture design of all WP3 subsystems and their interactions as well as the 
respective technical specifications emphasizing on the detailed description of WP3 research 
problems. The focus of this document is FLEXGRID High Level Use Case #4 (HLUC_04), which 
deals with the operation of automated flexibility aggregation as a service to independent 
aggregators. Three Use Case Scenarios (UCSs) are presented for the optimization of the 
business portfolio of the aggregator, which consists of end energy users/prosumers and their 
flexibility assets. The respective algorithms will be implemented in a S/W toolkit called 
Automated Flexibility Aggregation Toolkit (AFAT), which will dynamically interact with the 
core FLEXGRID Automated Trading Platform (ATP). 
 
Chapter 1 brings an introduction to this report summarizing the scope and purpose of the 
document. More specifically, it provides a high-level description and summary of: i) the 
aggregator’s business interests and how are these inter-related with the residual FLEXGRID 
business ecosystem, ii) state-of-the-art solutions for the aggregator’s business challenges, iii) 
proposed research problems’ statements, which are based on (i) and (ii), and what are the 
FLEXGRID’s innovations, and iv) FLEXGRID’s potential research impact on future aggregator’s 
business.   
 
Chapters 2-4 follow a similar structure in order to present the WP3 research results in a 
coherent manner. In particular, for each one of the three respective research problems, we 
present: 

 Problem statement, related state-of-the-art and summary of FLEXGRID research 
contributions 

 Proposed system model under study 

 Problem formulation including all mathematical modeling 

 Proposed algorithmic solution 

 Simulation setup and performance evaluation results 

 Next steps on how to elaborate on the ongoing WP3 research work until M26. 
 
Chapter 2 presents the research problem of the FLEXGRID UCS 4.1 entitled “Aggregator 
manages a FlexRequest”. Here, we assume that a flexibility market has been cleared and the 
aggregator needs to optimally schedule its portfolio. The aggregator’s objective is to 
maximize its profits from participation in the flexibility market. This translates to 
maximization of its revenues and minimization of the associated costs. The revenues of the 
aggregator increase with positive responses to FlexRequests. The associated costs can be 
divided into two categories. The first are end-user compensations for provision of flexibility, 
defined in FlexContracts. The second involves potential imbalance costs, meaning the 
financial effect of activating flexibility and deviating from the baseline (already scheduled 
energy profile of the flexibility assets due to their participation in the day-ahead energy 
market). 
  
Chapter 3 presents the research problem of the FLEXGRID UCS 4.3 that can be summarized 
as “Aggregator creates a FlexOffer in an automated and dynamic way”. Here, a novel bidding 
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algorithm is proposed in order for the aggregator to be able to participate in near-real-time 
balancing/flexibility markets. In more detail, we propose a generic method for capturing the 
aggregator's upward and downward flexibility cost for a set of distributed FlexAssets (or else 
DERs) that have non-convex models and inter-temporal couplings.  The method is model-free 
in the sense that it is not tailored to any specific DER model. Rather, it can be applied to any 
type of FlexAssets, regardless of the specific model that each type of FlexAsset has. For this 
purpose, we use a fitting function and machine-learning (ML) methods to evaluate the 
performance of the proposed FLEXGRID intelligence. 
 
Chapter 4 presents the research problem of the FLEXGRID UCS 4.2 entitled “Aggregator 
operates an ad-hoc B2C flexibility market with its end energy prosumers”. In this novel B2C 
flexibility market, we assume that the end users compete with each other to provide 
flexibility services to the aggregator. The details of each end user’s utility function are stated 
via the FlexContract that is agreed with the aggregator. In particular, we draw on concepts of 
mechanism design theory in order to define an iterative, auction-based mechanism, 
consisting of an allocation rule and a payment rule. The allocation rule refers to the way that 
the aggregator decides upon how much net consumption reduction/increase will be 
allocated to each end user (i.e. energy prosumer) according to the feedback obtained 
through the auction process. The payment rule refers to the way that the aggregator decides 
upon the reward of each user for his/her allocation, provided that the end user makes the 
corresponding contribution. Through the auction procedure, the aggregator exchanges 
messages with the end users in the form of queries. A query in our case is a price signal 
communicated from the aggregator to the end user, to which the end user responds with 
his/her preferred action (e.g. consumption reduction) according to this signal. 
 
Chapter 5 presents how all the above-mentioned research novelties that have been tested 
and validated at TRL 3, will be integrated in the Automated Flexibility Aggregation Toolkit 
(AFAT), which is part of the FLEXGRID Automated Trading Platform (ATP) at TRL 5. In 
particular, the AFAT’s frontend and backend services are described as well as the interaction 
between the WP3 research work and WP6 S/W implementation and integration work.    
 
Conclusively, in Chapter 6, we summarize the next steps for WP3 research work. We also 
describe how the WP3 research results will be elaborated in other Work Packages until the 
end of the project’s lifetime. 
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1  Introduction 

 

The purpose of High Level Use Case (HLUC) #4 is the operation of automated flexibility 
aggregation for optimal use of available distributed flexibility and maximization of profits for 
all participants in the portfolio (i.e. all Distributed FlexAssets and the aggregator entity itself). 
FlexContracts are agreed between end users and the aggregator, where users’ preferences, 
constraints and compensation schemes are stated. Different approaches, leading to different 
mathematical models and algorithms are used for the optimal use of distributed flexibility 
assets (DFAs) and are shown via the development of different Use Case Scenarios (UCSs) as 
documented in previous D2.1 and D2.2 (in Month 4 and 6 respectively). 
 
HLUC #4 focuses on the interaction between flexibility aggregators 1  and end energy 
prosumers2. Flexibility aggregators are considered as actors, which combine flexibility from 
energy prosumers and/or consumers and participate in markets as flexibility providers.  The 
aggregated flexibility is sold to different stakeholders like DSOs, TSOs and BRPs, which 
participate in the flexibility markets as flexibility buyers (i.e. demand side of the flexibility 
market). 
 
In previous D3.13, three research problems (one per UCS of HLUC #4) have been clearly 
defined. A high-level description of the three problems has taken place together with related 
works from the international literature. FLEXGRID’s research contributions have been clearly 
defined and hints about the problem formulation, algorithmic solution, datasets to be used 
for the system-level simulations and most important key performance indicators have been 
presented. 
 
This deliverable elaborates on the results of D3.1 by presenting the final version of 
mathematical modeling and proposed algorithms, while initial performance evaluation 
results are presented, too. Our next goal for M19-M26 period is to perform more simulations 
considering more realistic case studies and using real-life datasets by following the FLEXGRID 
data management plan.  
 

                                                
1 By the term “flexibility aggregator”, we mean the market actor who aggregates distributed flexibility from 
numerous small-scale end energy prosumers. The main difference with the Energy Service Provider (ESP) actor 
(cf. FLEXGRID D4.1 w.r.t. to WP4 research work) that we use in FLEXGRID is that the ESP is a company that also 
owns several types of FlexAssets and thus does not only have a portfolio of end energy prosumers like the 
aggregator. 
2 With the term “end energy prosumer”, we mean the end user who participates in a B2C flexibility market or 
has agreed on a FlexContract acting thus a customer of a flexibility aggregator company. 
3 https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf  

https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf
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In the previous D3.1, we have made an extensive survey work on the following state-of-the-
art solutions, which are related with the flexibility aggregator’s business challenges today as 
follows: 

1) Survey on type of incentives for flexibility provisioning 
2) Survey on novel market mechanisms for Demand Side Management (DSM) 

applications 
3) Survey on intelligent S/W agent solutions and equipment for end energy prosumers 
4) Survey on existing local flexibility markets in the EU area, where aggregators can trade 

their flexibility via a S/W platform 
 
Regarding the first point above, there are several types of incentive-based and price-based 
energy or flexibility programs/contracts that exist in the real aggregators’ business. More 
specifically, there are classical programs, in which consumers receive a fixed participation 
payment. There are also market-based programs, in which participants are rewarded based 
on their performance (e.g. amount of reduced electricity during critical conditions). The 
incentive-based flexibility contracts can also be categorized as: i) Direct Load Control, ii) 
Interruptible/Curtailable Load, iii) Emergency DSM Programs, iv) Capacity Market Programs, 
etc. On the other hand, there are considerably less price-based programs in the aggregator’s 
business today. This is mainly due to the fact that advanced ICT infrastructure needs to be 
installed in each end prosumer’s premises, which is a quite risky business plan. However, the 
idea of price-based flexibility programs/contracts has received much research attention from 
the international academic community, while many of these scientific solutions are being 
pilot tested in EU area during the last years.    
 
Following up the idea of modeling price-based energy/flexibility contracts, the challenge is 
to model the objectives of both intelligent, foresighted end users and the aggregator in the 
wholesale market. In other words, it remains an open challenge to integrate intelligent 
algorithms for distributed FlexAssets’ (DFAs) decisions with dynamic market mechanisms 
that are designed to serve the aggregators and ultimately the underlying physical electric 
grid. The afore-mentioned novel market mechanisms imply the existence of an ad-hoc B2C 
flexibility market, in which the aggregator has a dynamic interaction with all its end energy 
prosumers. The end energy prosumers are assumed to compete with each other in this new 
market in order for the aggregator to procure the cheapest possible flexibility, which will then 
be used to serve the power system’s flexibility needs.  
 
Finally, we have surveyed all existing real-life and conceptual local flexibility markets, which 
are being pilot-tested in the EU area during the last years. We have also compared them in 
terms of: i) the remuneration mechanism that they adopt for the flexibility aggregators (i.e. 
dispatch only or availability only or dispatch and availability payments), ii) the pricing rule 
that these markets adopt (i.e. pay-as-bid or pay-as-clear), iii) the flexibility products that are 
traded (i.e standardized vs. non-standardized flexibility products), and iv) the stakeholder 
that operates the local flexibility market (e.g. independent local market operator entity, DSO, 
platform co-designed by TSO and DSO, independent aggregator entity). For more details 
about the above-mentioned survey work, interested readers can refer to previous D3.1 (i.e. 
chapter 2 as well as section 3.2, 4.2 and 5.2 of D3.1).  
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Following up the survey work mentioned above from both academic and industrial 
perspectives, we have come up with three main related FLEXGRID research problems, 
namely: 

1) The aggregator wants to efficiently respond to a (set of) given FlexRequests made by 
a FlexBuyer (TSO/DSO, BRP) by optimally deciding the dispatch per FlexAsset/end 
energy prosumer (cf. UCS 4.1) 

2) The aggregator wants to maximize its revenues by dynamically orchestrating its 
distributed FlexAssets from its end users to optimally participate in near-real-time 
energy/flexibility markets (cf. UCS 4.3) 

3) The aggregator wants to operate an ad-hoc B2C flexibility market with its end energy 
prosumers by employing advanced pricing models and auction-based mechanisms (cf. 
UCS 4.2) 

 
Each one of the three research problems are described in detail in chapters 2-4 below. For 
each one of the three research problems, we present:  

 Problem statement, related state-of-the-art and summary of FLEXGRID research 
contributions 

 Proposed system model under study 

 Problem formulation including the entire mathematical modeling 

 Proposed algorithmic solution 

 Simulation setup and performance evaluation results at TRL 3, which demonstrate 
and prove the concept of FLEXGRID’s research innovations. 

 Next steps on how to elaborate on the ongoing WP3 research work until M26 in order 
to test and validate the proposed mathematical models and algorithms with more 
realistic case studies and the use of real-life datasets. 

 

 

In WP3, we focus on the scientific excellence of the proposed FLEXGRID services at TRL 3. The 
next goal is to adapt the most important WP3 scientific results in order be able to serve the 
business needs of an aggregator. Thus, in WP6, our focus is on FLEXGRID’s research impact 
on today and future aggregator’s business by demonstrating WP3 intelligence in the 
FLEXGRID ATP (i.e. TRL 5). 
 
More specifically, AFAT’s frontend (GUI)4 will be comprised of three basic tabs, namely: 

 Manage a FlexRequest  

 Create a FlexOffer 

 Manage a B2C flexibility market 
 

                                                
4 AFAT’s frontend services (GUI) will be developed by ETRA within WP6 context. 
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Table 2 below clarifies how the WP3 research results (TRL 3) will be further exploited in WPs 
6 and 8.   
 
Table 2: Summary of interactions between WP3 research work (scientific excellence at TRL 3) and 

WP6/WP8 work about potential business impact 

AFAT GUI (WP6) Mode of 
operation 

Business goal (WP8) 

Manage a 
FlexRequest 

Online A new FlexRequest is published in real-time by a FlexBuyer in 
the ATP. The aggregator is instantly informed and then runs the 
UCS 4.1 algorithm to decide the updated dispatch per 
FlexAsset/end user that belongs to its portfolio. 

Offline The aggregator performs “what-if” simulation scenarios (i.e. 
different configurations of FlexContracts, 
expansion/modification of portfolio, different sequence of 
FlexRequests, etc.) to determine strategies for optimal 
response to future FlexRequests.  For a sequence of multiple 
FlexRequests assumed in a given “what-if” simulation 
scenario configured by the aggregator user, the UCS 4.1 
algorithm will run iteratively. 

Create a FlexOffer Online  The aggregator creates a FlexOffer in real-time (in order to 
submit it in the ATP) based on the current availability of 
FlexAssets (cf. FlexContract per FlexAsset that denotes the 
available reserve capacity). 

Offline The aggregator runs “what-if” scenarios to see whether it is 
more beneficial to participate in the existing TN-level balancing 
market or DN-level balancing market (i.e. DLFM). 

Manage a B2C 
flexibility market 

Offline The aggregator runs various “what-if” simulation scenarios via 
running an advanced retail pricing algorithm (Behavioral Real 
Time Pricing – B-RTP) to identify how it can recommend a new 
(more beneficial) FlexContract to a set of end energy 
prosumers. 
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Within FLEXGRID project’s context, we follow the NODES market paradigm and platform 
setup. Regarding technical and S/W development issues, we rely on NODES real-life 
business experience, while NPC supports with its consultancy services regarding the 
integration of the proposed flexibility marketplace in the existing EU markets and 
regulations.  We assume an online flexibility marketplace (i.e. FLEXGRID ATP), in which the 
aggregator acts as a flexibility provider (i.e. FlexSupply side). We also consider that the 
aggregator is an independent market entity and has a portfolio of end energy prosumers. 
Each end energy prosumer has agreed a FlexContract with the aggregator that defines the 
terms under which the flexibility will be procured and remunerated. The aggregator 
registers all distributed FlexAssets in the marketplace, so that all other market stakeholders 
can see and verify them. The aggregator can use a set of intelligent mathematical models 
and algorithms to automate and dynamically adapt the flexibility aggregation process. This 
is exactly where FLEXGRID intelligence comes into the foreplay. The aggregator user will 
use the frontend and backend services of FLEXGRID’s Automated Flexibility Aggregation 
Toolkit (AFAT). In the AFAT frontend, the aggregator user will be able to configure several 
input parameters and exhaustively run simulation scenarios in an online and offline mode 
as well as visualize the results via a user-friendly GUI. In the AFAT backend, all FLEXGRID 
WP3 algorithms will run. Part of this FLEXGRID intelligence (at TRL 5) will be open source, 
so that today and future aggregator’s business can easily reuse it and potentially extend it.   
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2  An aggregator efficiently responds to 
FlexRequests made by TSO/DSO/BRPs by 
optimally orchestrating its aggregated 
flexibility portfolio of end energy prosumers 

The focus of this chapter is the research problem of FLEXGRID’s HLUC_04_UCS_01. In this 
specific Use Case Scenario (UCS), the aggregator needs to represent the flexibility of its 
portfolio of DERs (i.e. FlexAssets) in the market and manage the aggregated flexibility in a 
centralized manner. 
 

Flexibility needs in the future are expected to increase and the benefits of developing local 
flexibility markets are the focus of the ongoing research. The potential of DER flexibility and 
their interaction in the current market design is limited, which is expected to change with the 
emerging role of the independent aggregator.  A more detailed and extensive survey work 
on DERs, their flexibility and representation in the market can be found in chapter 2 and 
section 3.2 of previous FLEXGRID D3.15. 
 
In this research problem, the aggregator needs to efficiently respond to a FlexRequest. This 
requires dispatch of FlexAssets within its portfolio of flexible DERs to activate the requested 
amount of energy. Response to a FlexRequest and dispatch of FlexAssets is decided in an 
online fashion and the aggregator needs the appropriate digital tools (supported by advanced 
mathematical models and algorithms) in order to minimize the risks and maximize its profits. 
The complexity of this problem stems from the uncertainty of future flexibility activation 
needs, the different operation patterns and behaviors of FlexAssets and the multiple types 
of FlexContracts.   
 

In FLEXGRID, apart from maximizing the aggregator’s profit, three main requirements are 
considered when responding and managing a FlexRequest that is generated by the market: 

 Ensure profit for all end-users. The aggregator needs to have a strong and versatile 
portfolio to be able to fulfill FlexRequests. As the aggregator’s portfolio consists of 
DERs of end-users, who agree to provide their flexibility, the aggregator user needs 
to ensure that all participating end users are properly incentivized and have 
tangible and well-quantified profits.    

 The aggregator respects reservations of flexibility. Flexibility is needed for the 
system’s secure and reliable operation. All reservations of the aggregator’s 
flexibility need to be guaranteed and available when needed.  

 Deviations of scheduled operation. Flexibility is defined as the ability to modify the 
operation pattern upon a request. This causes deviations to the already scheduled 

                                                
5 https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf 

https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf
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operation pattern (e.g. day-ahead energy market dispatch schedule). These 
deviations should occur only for Market Time Units (MTUs), where flexibility was 
requested from the market. Any other deviation would have undesired effects to 
BRPs and suppliers of the same FlexAssets.  

 

Flexibility as an individual product is currently not traded in any of the European electricity 
markets. Flexibility, as a property of an electrical supply or demand source, in current 
electricity markets, can be used by existing market players to better position themselves in 
the Day-Ahead market and qualify their assets for provision of ancillary services. Flexible 
assets are of a particular interest and in the current market design can participate in the part 
of the ancillary services market relating to balancing needs (frequency regulation)  6, the 
regulation market. 
 
The regulation market in the existing regulatory framework can be divided in two stages: the 
DA reserve market and the balancing market (near real-time). In the DA reserve market, 
participants with successful/accepted bids commit to their ability to deliver the agreed 
quantity of energy for a specific Market Time Unit (MTU) and are in principle compensated 
for the reserved capacity (or else availability). In a second stage, at near real-time, the actual 
needs of the system become known and participants can bid for providing balancing energy. 
In most European markets, accepted bids of reserved capacity are obliged to offer balancing 
energy in the near-time balancing market. This however does not exclude the participation 
of other market players. 
 
In the current electricity market design, the regulation market is under the supervision of the 
TSO, who is the sole buyer of reserve capacity and balancing energy at the transmission 
network level. The independent aggregator aims to represent flexibility of DERs in the 
market, which in turn will expand the potential of “flexibility” markets by attracting more 
flexibility buyers. Flexibility from DERs can be used to provide technical needs concerning 
system operation for both TSOs and DSOs, better balancing opportunities for trading (cf. BRP 
services) and requirements for non-dispatchable generation (cf. RES Producers) to 
participate in energy markets. 
 
In the UCS examined in this chapter, the two stages of the regulation market are incorporated 
under the umbrella term of “FlexRequests”. The independent aggregator is considered to be 
a price-taker market player, who interacts with the market by receiving FlexRequests-
Reserve in the DA reserve market, and FlexRequests-Dispatch in the near real-time balancing 
market. Potentially, both types of FlexRequests can originate from multiple flexibility buyers, 
namely TSO, DSO and BRPs. The sequence of FlexRequests is shown in the figure below. 

                                                
6 ENTSOe, “Survey on Ancillary Services Procurement and Electricity Balancing Market Design”, 2019, [Online]. 

https://www.entsoe.eu/publications/market-reports/#2019-surveys-on-ancillary-services-and-cross-border-
balancing-initiatives 

https://www.entsoe.eu/publications/market-reports/#2019-surveys-on-ancillary-services-and-cross-border-balancing-initiatives
https://www.entsoe.eu/publications/market-reports/#2019-surveys-on-ancillary-services-and-cross-border-balancing-initiatives
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Figure 1: Diagram of potential sequence of types of FlexRequests 

 
 
In case the aggregator accepts a FlexRequest of the reserve type (i.e. FlexRequest-Reserve), 
the reserved capacity needs to be available for the specific flexibility buyer for the required 
MTU. The aggregator is obliged to accept a FlexRequest-Dispatch from the same flexibility 
buyer for the specified MTU, up to the amount of capacity/energy of the FlexRequest-
Reserve. In case of a FlexRequest-Dispatch with no prior reservation, the aggregator can 
either give a positive or negative response. 
 
The scheduled operation (consumption/generation) of FlexAssets within the aggregator’s 
portfolio, in accordance with the timeline and sequence of current trading floors for energy, 
is determined in the Day Ahead energy market (Supplier/Independent Aggregator). In other 
words, this means that we assume an already defined dispatch schedule generated after the 
market clearing process of the day-ahead energy market that should be (by all means) 
respected by all market participants. 
 
A positive response to a FlexRequest-Dispatch requires the aggregator to activate a subset of 
FlexAssets of its portfolio to reach the requested amount of energy for the MTU. Depending 
on the cost function and with respect to the constraints of the FlexAssets and end-users, the 
aggregator issues for each FlexRequest-Dispatch the dispatch decision per FlexAsset for the 
relevant MTU. 
 
As shown in the figure below, the clearing of the day-ahead reserve market precedes the 
near-real-time balancing market. The aggregator represents its portfolio of FlexAssets in both 
markets. Prior to any FlexRequest, which requires activation/dispatch of FlexAssets (Flex 
Request – Activation), the aggregator knows its obligations from the reserve market and from 
any other bilateral agreements (FlexRequest – Reserve).  

FlexRequest-Reserve 

FlexRequest-Dispatch 
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Figure 2: Placement of UCS 4.1 mathematical model and algorithm in the existing regulatory 

framework 

 

The objective function, from the aggregator’s point of view, is to maximize the profit from its 
participation in the flexibility market. This translates to the maximization of the revenues 
from the flexibility market (FlexibilityRevenues), while minimizing the associated costs 
(FlexibilityCosts). 
 
The main parameters of the optimization problem required to calculate FlexibilityRevenues 
and FlexibilityCosts from the aggregator’s perspective are: 

 FlexRequests, which represent interaction with the market. 

 FlexContracts, which represent interaction with end-users. 

 FlexAssets that belong to the aggregator’s portfolio. 

 

2.3.1 FlexRequest 

As stated in section 2.2, a FlexRequest can be one of two types: reserve or dispatch. The 
fields, parameters and information contained within FlexRequests are shown in the following 
table.  
 

Table 3:  Fields, parameters and information contained within FlexRequests 

Type of Request Reserve Dispatch 

FlexBuyer X X 

Grid Location A A 

Quantity type Capacity (Power)   Energy 

Quantity Amount of kW Amount of kWh 

Regulation Up/Down/Symmetrical Up/Down 
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Reservation Price Price per kW - 

Dispatch Price Min price per kWh Price per kWh 

Acceptance Type Full/Partial  Full/Partial  

Timestamp y ∈ [0,95] y ∈ [0,95] 

Market Time Unit (MTU) x ∈ [0,95] x ∈ [0,95] 

Activation notice Min time for dispatch request - 

 

Accepted FlexRequests of the reserve type, which represent interaction of the aggregator 
with the current DA reserve market, require availability of the requested capacity for the 
requested MTU. The aggregator must ensure that all control actions over its FlexAssets 
respect this constraint. The activation notice of the FlexRequest-Reserve provides also 
information of the latest timestamp, where the dispatch of reserved capacity can occur.  
 
A FlexRequest of the reserve type offers reservation payments to the aggregator for the 
requested amount of available capacity/power. A FlexRequest-Reserve is assumed to contain 
information regarding the minimum price for activation per kWh, for a following 
FlexRequest-dispatch, which is necessary for the aggregator to decide to accept or not the 
reservation request. 
   
The aggregator’s revenue associated with reservation of FlexAssets for all MTUs within the 
time horizon 𝑇 is: 
 

∑ ∑ 𝐶𝑖,𝑡
𝐹𝑅𝑟 ∙

𝑖∈𝐹𝑅𝑟𝑡∈𝑇

𝑃𝑟𝑖,𝑡
𝐹𝑅𝑟 ∙ 𝑥𝑖,𝑡

𝐹𝑅𝑟          (2.1) 

 

where 𝐹𝑅𝑟  is the set of all FlexRequests-Reserve, 𝐶𝑖,𝑡
𝐹𝑅𝑟   and 𝑃𝑟𝑖,𝑡

𝐹𝑅𝑟  are respectively the 

requested capacity (kW) and price per kW of a FlexRequest-Reserve 𝑖 ∈ 𝐹𝑅𝑟 for MTU  𝑡. 
Parameter 𝑥𝑖,𝑡

𝐹𝑅𝑟  denotes the acceptance type of the FlexRequest 𝑖 and is equal to 1, if the 

FlexRequest is fully accepted.  
 
A FlexRequest of the dispatch type can either follow a FlexRequest-Reserve, requesting 
activation of reserved assets, or come without a prior reservation. In the first case, the 
aggregator is required to fulfil the request, while in the second case, the response of the 
aggregator can be either positive or negative (cf. Figure 1 above). In any case, the aggregator’s 
revenue associated with requests for dispatch of flexibility depends only on the activated 
flexible energy and does not include reservation payments: 
 

∑ ∑ 𝐸𝑗,𝑡
𝐹𝑅𝑑 ∙ 𝑃𝑑𝑗,𝑡

𝐹𝑅𝑑 ∙

𝑗∈𝐹𝑅𝑑𝑡∈𝑇

𝑥𝑗,𝑡
𝐹𝑅𝑑          (2.2) 

 

where 𝐹𝑅𝑑  is the set of all FlexRequests-Dispatch, 𝐸𝑗,𝑡
𝐹𝑅𝑑   and 𝑃𝑑𝑗,𝑡

𝐹𝑅𝑑  are respectively the 

requested energy (kWh)  and price per kWh of a FlexRequest-Dispatch 𝑗 ∈ 𝐹𝑅𝑑 for MTU  𝑡. 

Parameter 𝑥𝑗,𝑡
𝐹𝑅𝑑  denotes the acceptance type of the FlexRequest 𝑗 and is equal to 1 if the 

FlexRequest is fully accepted.  
 
Reserved capacity and activated energy for a MTU are related through:  
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𝐸𝑖,𝑡
𝐹𝑅𝑑 = 𝐶𝑑𝑖,𝑡

𝐹𝑅𝑟 ∙ 𝜏         (2.3) 

where 𝜏 is the duration of a single MTU. 

 

2.3.2 FlexContract/End-user compensation 

End-user compensation, or else the aggregator’s cost of acquiring flexibility, is defined in the 
FlexContracts of the aggregator with the end-users that belong to its portfolio. The 
compensation of the end-user can be separated into three categories: 
Reservation/Participation, Dispatch and Activation.  
 
The reservation/participation component provides the incentive to the end-user to 
participate in the aggregator’s portfolio. This ensures a decrease of the end-user’s electricity 
bill, even in the case where none of his flexibility assets are dispatched/used. The 
participation payment depends on the amount of flexibility that the end-user provides to the 
aggregator. In any case, concerning the time horizon of the optimization problem, this is a 
fixed cost for the aggregator. 
 
The dispatch component is related to the dispatched flexibility/energy and it is energy-
dependent. In contrast, the activation component is related to the number of times that a 
FlexAsset is activated and depends on the number of activations. For a given FlexAsset, the 
compensation involving its use can either be energy dependent or dependent on the number 
of activations. Energy dependent compensation for the FlexAssets of end-users  𝑁  over the 
time horizon 𝑇 is computed based on the following mathematical formula: 
 

∑ ∑ ∑ 𝐸𝑘,𝑡,𝑛
𝐹𝐴 ∙ 𝑃𝑟𝑘,𝑡,𝑛

𝐹𝐴

𝑘𝜖𝐹𝐴𝑛𝜖𝑁𝑡𝜖𝑇

         (2.4) 

 
Here, 𝐸𝑘,𝑡,𝑛

𝐹𝐴  is the activated flexible energy of FlexAsset 𝑘 𝜖 𝐹𝐴 and 𝑃𝑟𝑘,𝑡,𝑛
𝐹𝐴  is the price per 

kWh for MTU 𝑡. 
 
The activation component of compensation, which depends on number of activations is: 
 

∑ ∑ ∑ 𝑃𝑟𝑘,𝑡,𝑛
𝐹𝐴  (𝑙) ∙ 𝑥𝑘,𝑡,𝑛

𝐹𝐴          (2.5)

𝑘𝜖𝐹𝐴𝑛𝜖𝑁𝑡𝜖𝑇

 

 
In this case, 𝑃𝑟𝑘,𝑡,𝑛

𝐹𝐴 (𝑙) is the price for the 𝑙th activation and 𝑥𝑘,𝑡,𝑛
𝐹𝐴  is 0 or 1 depending on the 

status of activation of FlexAsset 𝑘𝜖𝐹𝐴 during MTU 𝑡. 
 
Activation and dispatch payments of end-user compensations are one of the aggregator’s 
costs, which depend on the dispatch decision of the aggregator. The objective of the 
aggregator is through the optimal management of its portfolio to minimize these payments, 
thus its cost. The participation fee ensures that end-users are properly incentivized to provide 
their flexibility. Activation and dispatch payments described in FlexContracts provide 
sufficient compensation for end-users and do not depend on the value of flexibility in the 
market. The risk of participating in flexibility market (cf. possible imbalances) is undertaken 
by the aggregator. The compensation of end-user 𝑛 𝜖 𝑁 for participation in the flexibility 
market is: 
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𝑃𝐹(𝑛) + ∑ ∑ 𝐸𝑘,𝑡,𝑛
𝐹𝐴 ∙ 𝑃𝑟𝑘,𝑡,𝑛

𝐹𝐴

𝑘𝜖𝐹𝐴𝑡𝜖𝑇

+ 𝑃𝑟𝑘,𝑡,𝑛
𝐹𝐴  (𝑙) ∙ 𝑥𝑘,𝑡,𝑛

𝐹𝐴          (2.6) 

 
A constraint of the independent aggregator’s optimization problem is that all participating 
end-users should benefit from the provision of their FlexAssets. The baseline cost of 
electricity of an end user is: 

∑ 𝐸𝑏(𝑡) ∙ 𝑟𝑝(𝑡)

𝑡𝜖𝑇

         (2.7) 

where 𝐸𝑏(𝑡) and 𝑟𝑝(𝑡) denote the energy of the baseline consumption and the retail price 
of electricity at MTU 𝑡. Participation in the flexibility market leads to deviations between 
scheduled/baseline operation ( 𝐸𝑏 ) and actual operation ( 𝐸𝑎 ). Thus, the aggregator’s 
constraint concerning an end-user is: 
 

∑ 𝐸𝑎(𝑡) ∙ 𝑟𝑝(𝑡)

𝑡𝜖𝑇

− {𝑃𝐹(𝑛) + ∑ ∑ 𝐸𝑘,𝑡,𝑛
𝐹𝐴 ∙ 𝑃𝑟𝑘,𝑡,𝑛

𝐹𝐴

𝑘𝜖𝐹𝐴𝑡𝜖𝑇

+ 𝑃𝑟𝑘,𝑡,𝑛
𝐹𝐴 (𝑙) ∙ 𝑥𝑘,𝑡,𝑛

𝐹𝐴 } ≤ ∑ 𝐸𝑏(𝑡) ∙ 𝑟𝑝(𝑡)         (2.8)

𝑡𝜖𝑇

 

 
and should stand for all end-users 𝑛 𝜖 𝑁. 
 

2.3.3 FlexAssets 

Apart from the end-user compensation, FlexContracts contain information regarding end-
users’ preferences and constraints, FlexAssets and their flexibility behavior. This information 
is necessary for the aggregator to extract the available flexibility and cost for each FlexAsset 
and construct tables for relevant MTUs.  
 
Moreover, it is assumed that the scheduled operation of each individual FlexAsset is known 
and the appropriate ICT infrastructure is available to allow monitoring and direct control of 
all FlexAssets.  
 
Flexibility assets can either be supply, demand or storage assets. All types of FlexAssets, 
depending on the scheduled operation pattern (cf. DA energy market), can be used in 
principle for either direction of a FlexRequest (i.e. up or down regulation).  
 
A more interesting classification of assets is based on the type of control over their operation 
pattern. A fully flexible asset is labeled as “adjustable” and its basic property is the ability to 
activate the potential flexibility, defined by both technical characteristics and user 
constraints and preferences, based only on current operation for any given timeslot (MTU), 
without any dependency on past operation and without affecting operation at future time 
slots. This type of FlexAssets can be associated with either dispatch or activation payments.  
 
Assets with shiftable operation patterns belong to another type, called “shiftable”. The 
control of assets in this category allows shifting the operation pattern to a past or future 
timeslot with respect to the scheduled operation pattern. The total energy consumed/ 
generated by this type of assets is defined and the operation pattern always includes 
consecutive MTUs. When the operation pattern of assets can be shifted in time, but can also 
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be interrupted, the asset is “shiftable-interruptible”. The total amount of energy is the same, 
but the operation can be divided along the time horizon under consideration.   
 
The operation pattern of both shiftable and shiftable-interruptible FlexAssets is considered 
to involve more than one MTUs, thus shifting their operation affects multiple MTUs and 
causes deviations from the baseline schedule, which were not necessarily requested. These 
deviations may incur extra cost, depending on the market structure. In the case, where all 
deviations due to shifts can be submitted to the market and establish a new scheduled 
operation pattern/baseline, there are no extra costs. It is possible however, that for MTUs in 
the near future, there is no possibility for the aggregator to submit a new schedule and 
imbalance costs for those MTUs need to be considered.  
 
The aggregator has two alternatives to deal with imbalance costs. The first one involves the 
management of the operation of FlexAssets within its portfolio to absorb undesired 
deviations and reach the baseline of the DA energy market for MTUs, where flexibility was 
not requested, and rescheduling is not an option. The second one is the acceptance of 
imbalance costs imposed by the market. 
 

2.3.4 Objective Function of the Aggregator 

The objective function of the aggregator is to maximize the profit from participating in the 
flexibility market by responding to multiple FlexRequests within a given time horizon 𝑇. The 
objective function to be maximized, including only variable components, can be formulated 
as follows: 
 

∑ ∑ 𝐸𝑗,𝑡
𝐹𝑅𝑑 ∙ 𝑃𝑑𝑗,𝑡

𝐹𝑅𝑑 ∙

𝑗∈𝐹𝑅𝑑𝑡∈𝑇

𝑥𝑗,𝑡
𝐹𝑅𝑑 − ∑ ∑ 𝑐𝑘,𝑡

𝐹𝐴(𝑒𝑘,𝑡)

𝑘∈𝐹𝐴𝑡∈𝑇

− ∑ 𝐼𝐶

𝑡∈𝑇

(𝑆𝑂(𝑡) + 𝐸(𝑡) − 𝐴𝑂(𝑡))         (2.9)  

 

where the first term represents revenues from FlexRequests-Dispatch, the second one the 
cost for activating flexibility within the portfolio and the third one imbalance costs imposed 
by the market. Technical characteristics, user preferences and constraints, FlexContracts and 

the baseline consumption of FlexAssets determine the cost 𝑐𝑘,𝑡
𝐹𝐴(𝑒𝑘,𝑡) of acquiring flexible 

energy 𝑒 from FlexAsset 𝑘 ∈ 𝐹𝐴  at MTU 𝑡. The imbalance cost 𝐼𝐶  is the market price for 
undesired deviations of scheduled energy, which per MTU 𝑡 are equal to scheduled operation 
(𝑆𝑂(𝑡)) plus requested and accepted flexibility (𝐸(𝑡)) minus actual/measured operation 
(𝐴𝑂(𝑡)).     
 

The aggregator’s objective function is a multi-level optimization problem with constraints, 
where the aggregator needs to optimally schedule its assets for each MTU in order to 
maximize the profit over the entire time horizon. The output of this evaluation scenario is 
the set of activated FlexAssets for each MTU.  
 
All the requests for dispatch of flexibility within the time horizon are not known in advance, 
thus at run-time, during online operation of the process “Manage a FlexRequest” that is 
available in the Automated Flexibility Aggregation Toolkit (AFAT), the aggregator has limited 
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information of future requests. This limited information prohibits exhaustive search over the 
entire time horizon, which is only possible for offline operation and “what-if” simulation 
scenarios. More details about the S/W integration of UCS 4.1 algorithm inside AFAT and the 
respective AFAT’s frontend and backend services are provided in chapter 5 of this report.  
 
Upon a request for dispatch of energy at 𝑡0 for MTU  𝑡, the proposed approach is for the 
aggregator to select for dispatch the lower cost FlexAssets in order to reach the necessary 
amount of energy (greedy scheduling technique). Feasibility of a potential set of FlexAssets 
would require respect over the constraints (reserve availability). The cost assigned to each 
FlexAsset takes into account activation cost for the MTU under consideration, modification 
of scheduled operation and effects on availability in future time slots. The weight of the 
component involving availability in future timeslots depends on the probability of having a 
FlexRequest on each MTU. These probabilities are determined based on scenarios of 
FlexRequests. As the portfolio of the aggregator can be quite extended, classification of 
FlexAssets by using clustering techniques can be applied to improve performance and 
scalability. 
 

2.5.1 Simulation setup 

The basic inputs of this UCS are FlexRequests, FlexContracts and FlexAssets. As flexibility 
markets do not exist in the current regulatory market design, FlexRequests of the reserve 
type will be based on the existing DA reserve market. Volumes and prices of FlexRequests of 
dispatch type will be based on data of existing balancing energy markets. 
 
Operation patterns of FlexAssets will be taken from load monitoring of different DERs. Cost 
aspects involving activation of flexibility will be derived from real-life explicit DR 
programs/business cases and relevant research work. Imbalance costs of the market will be 
based both on prices of intraday markets and balancing markets. 
 
The length of the time horizon of the optimization problem is a 24-hour day, (00:00-23:59), 
which coincides with the output of the existing DA energy market and  input datasets will be 
used for several days to observe the efficiency of the algorithm and to determine the optimal 
parameters for cost and selection functions. 
 

2.5.2 Performance evaluation and KPIs 

The principal goal of this research problem is the maximization of the aggregator’s profit for 
offering flexibility in the electricity market. In order to evaluate the performance of the 
proposed algorithm, the following KPIs will be measured: 

 Reliability of the aggregator towards flexibility reservations and activations.  The 
aggregator must be consistent and reliable towards its actions in the market. 
Incompetence to activate energy that has been requested will lead to penalties and 
extra costs. 

 Utilization of flexibility of portfolio. The aggregator needs to utilize, either through 
reservations or activations, the flexibility of its portfolio in an optimal way. If large 
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amounts of flexibility remain unused for multiple time horizons, the cost of sustaining 
the portfolio is not justifiable and profitable. 

 Undesired deviations from scheduled operation. The aggregator should prioritize 
absorbing deviations with actions within its portfolio. Imbalances in the market 
indicate the need to expand the portfolio of FlexAssets.   

 

During the period M19-M26 of the FLEXGRID project, the focus of this research problem will 
be on creating realistic datasets and test performance of the proposed approach for several 
types of flexibility portfolios and cost functions.  
 
A version of the UCS 4.1 algorithm will be integrated in the Automated Flexibility Aggregation 
Toolkit (AFAT) and FLEXGRID ATP, which will be done in close collaboration with the work 
performed in WP6. The aggregator user will be able to visualize its portfolio and the use of 
the proposed algorithm will allow the issue of an optimized dispatch of FlexAssets. Two types 
of operation will be possible, namely online and offline. During online operation, the 
aggregator will make decision concerning its FlexAssets when receiving a FlexRequest. For 
offline operation, the aggregator will be able to run different “what-if” simulation scenarios 
to test its ability to manage more FlexRequests by altering accepted reservation of flexibility 
and by expanding its portfolio in the future.  
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3 An aggregator maximizes its revenues by 
dynamically orchestrating distributed 
FlexAssets from its end users to optimally 
participate in near-real-time energy markets 

This chapter deals with the research problem of FLEXGRID’s UCS 4.3. In this UCS, we consider 
the problem of an aggregator that wants to offer aggregated flexibility in a near-real-time 
energy market on behalf of a vast number of distributed and small-scale FlexAssets. In today’s 
EU electricity markets, this near-real-time market is the so called “balancing energy” market, 
which is operated by the TSO. However, within FLEXGRID project’s scope, we also consider 
near-real-time distribution level flexibility market (DLFM) in which balancing energy product 
is traded between the DSO and aggregators that offer distributed local flexibility to the DSO. 
Thus, the DSO is able to deal with local congestions and imbalances that may come up in 
near-real-time contexts.    
 
Following up the research work of UCS 4.1 that was presented in the previous chapter, we 
now focus on another aggregator’s challenging task, which is the design of the aggregator’s 
FlexOffer strategy in a near-real-time context.  More specifically, it is difficult for the 
aggregator to capture the flexibility cost of a portfolio of FlexAssets within a price-quantity 
offer, since the costs and constraints of FlexAssets exhibit inter-temporal dependencies.  
 

In FLEXGRID UCS 4.3 research work, we propose a generic method for constructing 
aggregated FlexOffers that best represent the aggregator portfolio’s actual flexibility 
costs, while accounting for uncertainty in future timeslots. For the case study presented, 
we use offline simulations to train and compare different machine learning algorithms that 
receive the information about the state of the FlexAssets and calculate the aggregator’s 
FlexOffer. Once trained, the machine learning algorithms can make fast decisions about 
the portfolio’s FlexOffer in the near-real-time balancing market. The performance 
evaluation results show that the proposed method performs reliably towards minimizing 
the aggregator’s imbalances. 
 
In FLEXGRID ATP, the aggregator user will be able to utilize the Automated Flexibility 
Aggregation Toolkit (AFAT) to make efficient FlexOffer in near-real-time balancing markets 
and DLFMs. In the online operation mode, the aggregator can automatically create a 
FlexOffer in real-time (in order to submit it in the ATP) based on the current availability of 
FlexAssets (cf. FlexContract per FlexAsset that denotes the available reserve capacity). In 
the offline operation mode, the aggregator runs “what-if” scenarios to see whether it is 
more beneficial to participate in the existing TN-level balancing market or DN-level 
balancing market (i.e. DLFM). If the FlexOffer is not accepted in DLFM, it can be 
automatically forwarded to the TSO’s balancing market. 
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Within the previous deliverable D3.17, we have conducted an extensive survey work on the 
related state-of-the-art research that has taken place during the last years in this research 
field. The interested reader may search for more details in the respective section of D3.1 and 
the references therein. 
 
Summarizing this international literature review, studies typically assume some type of 
electricity price forecast, and a price-taking aggregator entity that only bids an energy 
quantity (much like a supplier does) instead of price-quantity pairs. Creating price-quantity 
pairs, is a challenging task for the aggregator, since the costs and constraints of its DERs have 
inter-temporal couplings, i.e., the flexibility cost of a DER in the current timeslot is dependent 
on how the DER flexibility will be controlled in future timeslots. Moreover, the aggregator's 
bid must be decided in an online (i.e. near-real-time) fashion, which means that the available 
time for computations is very limited (e.g. 15 minutes, 5 minutes or even less in the future). 
The problem gets even more complex, if we want to take into consideration all the various 
and diversified FlexAsset models like electric vehicles, heat pumps, different types of storage 
units, shiftable loads, etc. 
 

In FLEXGRID, we take into consideration four main requirements towards designing an 
aggregator’s FlexOffer as follows (cf. also 16): 

 Req #1: The aggregator’s FlexOffer should be concise. Given the scale of 
aggregators and the complexity of the constraints of FlexAssets, it is impossible to 
communicate precise information about every FlexAsset. Instead, aggregate 
flexibility feedback must be a concise summary of a system’s constraints. Even if it 
was possible, providing exact information about the constraints of each FlexAsset 
governed by the aggregator would not be desirable because the FlexAsset 
constraints are typically private. Information conveyed to the system operator 
must limit the leakage about specific FlexAsset constraints8. 

 Req #2: The aggregator’s FlexOffer should be informative. The feedback sent by 
an aggregator needs to be informative enough that it allows the system operator 
to achieve operational objectives, e.g., minimize cost, and, most importantly, 
guarantee the feasibility of the whole system with respect to the private FlexAsset 
constraints. 

 Req#3: The aggregator’s FlexOffer should be general enough. Any design for an 
aggregator’s FlexOffer must be general enough to be applicable for a wide variety 
of controllable loads, e.g., electric vehicles (EVs), heating, ventilation, and air 
conditioning (HVAC) systems, energy storage units, thermostatically controlled 
loads, residential loads, heat pumps, etc. It is impractical to imagine a different 
FlexOffer for each FlexAsset, so the same design must work for all types of 
distributed FlexAssets. 

                                                
7 https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf  
8 In this document, we focus our mathematical modeling on the TSO’s balancing market. A similar approach 
may be followed for an aggregator’s FlexOffer in the novel distribution-level flexibility markets (DLFMs) 
proposed by FLEXGRID. In this case, the aggregator may provide near-real-time balancing energy services to the 
local DSO. 

https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf
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 Req #4: The aggregator’s FlexOffer should be real-time. The system is time-varying 
and non-stationary. So it is crucial that (nearly) real-time feedback can be defined 
and approximated if it is to be used in online FlexOffers made by the aggregator. 

 
Summarizing FLEXGRID’s scientific contributions, we propose a generic method for capturing 
the aggregator's upward and downward flexibility cost for a set of distributed FlexAssets (or 
else DERs) that have non-convex models and inter-temporal couplings.  The method is model-
free in the sense that it is not tailored to any specific DER model. Rather, it can be applied to 
any type of FlexAssets, regardless of the specific model that each type of FlexAsset has. We 
use a fitting function for this purpose. In order to address the uncertainties of the FlexAssets' 
parameters, we perform offline scenario-based simulations, and use these simulations to 
train a machine-learning (ML) algorithm. Different ML methods are tested and compared. In 
online operation, the trained ML can be provided with the current state of the FlexAssets, 
and predict the optimal aggregator’s FlexOffer (prices for given levels of balancing energy) 
for the next timeslot ahead very quickly and, as our simulation results indicate (cf. section 
3.5 below), with very good accuracy. 
 

There is a general consensus that participation of distributed FlexAssets (also called “DERs”) 
should be realized via aggregators, i.e., entities that participate in electricity markets and 
undertake balance responsibility on behalf of a portfolio of multiple DERs/FlexAssets. A 
FlexAsset/DER is assumed to be registered with an aggregator9, where the latter installs the 
necessary communication infrastructure that allows it to monitor, forecast and control the 
electricity profile of the FlexAsset. Each FlexAsset has a certain set of preferences towards its 
electricity profile, as well as a cost function that maps a FlexAsset’s electricity profile to a 
monetary cost. For example, an Electric Vehicle (EV) has an arrival time and a certain energy 
that it needs to receive (charge) before its departure. If the aggregator requests the EV to 
receive less energy than required, then the EV requests a compensation for this flexibility 
service. 
 
Market participants (buyers and sellers) can trade energy in the day-ahead and/or intra-day 
markets. This free trade stops at a certain time before real time (delivery time) in order for 
the system operator to ensure that the system will be balanced in real time operation. The 
time in which trading stops is called gate closure time. After the gate closure, each participant 
reports a certain energy profile (energy bought/sold) to the system operator. This profile is 
referred to as the participant’s market program. 
 
In real-time operation, the transmission system operator (TSO) is responsible for maintaining 
the balance between supply and demand. Given a market program for each market 
participant (cf. day-ahead dispatch – DAD results in the figure below), the TSO receives the 
players’ offers for providing or requesting balancing energy. A cost optimization problem is 
run at the TSO’s side, through which the balancing energy dispatch of each player is 
determined. 

                                                
9 In FLEXGRID ATP, there is an API via which the aggregator can register all its contracted FlexAssets/DERs in the 
platform, so that the latter can participate in the various B2B and B2C electricity markets. 
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In order for the TSO to be able to solve this optimization problem in a fast and scalable way, 
the balancing energy offers (i.e. FlexOffers) made by the participants need to be provided in 
a certain bidding format, which guarantees that the optimization problem is tractable. This 
FlexOffer process is depicted in the red outlined area in the figure below. For example, a 
participant is typically required to make an offer for upward balancing energy and downward 
balancing energy for the timeslot ahead. A typical FlexOffer is a mapping that relates a level 
of balancing energy provision to a certain monetary cost. These FlexOffers are typically 
required to be in a step-wise form, i.e., pairs of price-quantity. 
 

 
Figure 3: Placement of UCS 4.3 mathematical model and algorithm in the existing regulatory 

framework10 

 
We consider an aggregator entity that is responsible for submitting offers for balancing 
energy on behalf of its portfolio. Let 𝑁  denote the set of FlexAssets registered with the 
aggregator and 𝑇 denote a set of timeslots within a particular time horizon. The electricity 

demand of 𝑁  in 𝑇  is comprised by a vector P𝑁 = {P𝑁
1, P𝑁

2, . . . P𝑁
|𝑇|

} , where an element P𝑁
𝑡  

represents the portfolio’s market program (i.e. the energy bought in the day-ahead energy 
market represented by the term “DAD results” in the figure above) for timeslot 𝑡. In other 
words, we assume that the aggregator should respect a day-ahead energy schedule, which is 
the result of the day-ahead energy market clearing process. We assume that this day-ahead 
energy schedule should be respected by the aggregator. 
 
Some FlexAssets can offer certain flexibility with respect to their electricity demand. In 
particular, the electricity consumption of a flexible DER 𝑛 in timeslot 𝑡 can be controlled. We 
                                                
10 A similar approach for the creation of the aggregator’s FlexOffer is followed for the proposed near-real-time 
DLFMs that are proposed within FLEXGRID. More details about the respective sequence diagrams and 
regulatory assumptions are provided in chapter 2 of D6.1 (M18) - https://flexgrid-project.eu/deliverables.html 

https://flexgrid-project.eu/deliverables.html
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denote this control variable as 𝑥𝑛
𝑡  and the respective vector 𝐱𝑛 = {𝑥𝑛

1 , 𝑥𝑛
2, . . . , 𝑥𝑛

|𝑇|
} denotes 

the controllable consumption profile of a flexible DER across the time horizon. A certain 
consumption profile 𝐱𝑛 , generally comes with a cost for FlexAsset 𝑛. More specifically, a 
FlexAsset’s cost is defined as a function 𝑐𝑛(𝐱𝑛) . Moreover, FlexAsset 𝑛  bears a set of 
constraints regarding its profile, which for the moment are abstractly denoted as: 

𝐱𝑛 ∈ 𝐹𝑛 .   (3.1) 
 
Here, a major observation that have to be carefully considered is that constraints (3.1) may 

couple a variable 𝑥𝑛
𝑡1  with a variable 𝑥𝑛

𝑡2, i.e., a FlexAsset’s model may exhibit inter-temporal 
couplings. The aggregated flexible consumption in timeslot 𝑡 is denoted as 𝑋𝑁

𝑡 , where 
𝑋𝑁

𝑡 = ∑ 𝑥𝑛
𝑡

𝑛∈𝑁    (3.2) 
 

and the respective vector 𝐗𝑁  denotes the aggregator’s flexible consumption profile across 
the time horizon. The difference P𝑁

𝑡 − 𝑋𝑁
𝑡  is the aggregator’s provided balancing energy in 

timeslot 𝑡. Note that it can also take on negative values when the aggregator “absorbs” more 
energy than P𝑁

𝑡 . 
 
The aggregator has to provide a FlexOffer in the timeslot 𝜏 ahead (i.e. a cost for energy 
injection and an offer for energy absorption). The bidding format is subject to the rules of the 
TSO. Typically, it has to be in a form of a step-wise function that defines pairs of balancing 
energy quantity and price as it is shown in the figure below in order to make the economic 
dispatch problem solvable by standard mixed-integer programming techniques. The above 
bidding format, although conducive for the TSO, is quite restrictive for the aggregator, since 
it cannot fully capture the aggregator’s actual model, which is comprised by the cost 
functions 𝑐𝑛(𝐱𝑛) and constraints 𝐱𝑛 ∈ 𝐹𝑛 of all FlexAssets in the aggregator’s portfolio. Note 
also, that the FlexAssets’ cost functions and constraints may exhibit inter-temporal 
dependencies, too. 
 

 
Figure 4: A typical form of an aggregator’s FlexOffer for the upward balancing energy product11 

 

                                                
11 A similar FlexOffer curve is also created by the aggregator for the downward balancing energy product. 
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In order to facilitate the method presentation, and without loss of generality with respect to 
the methods that will be presented, we assume that the aggregator offers one price-quantity 
pair, i.e., a per-unit price 𝑏𝑢𝑝

𝜏  paired with a maximum quantity Bup
𝜏  for upward balancing 

energy (i.e. injecting power by curtailing electricity consumption) and bids a per-unit price 
𝑏𝑑𝑜𝑤𝑛

𝜏  and a maximum quantity Bdown
𝜏  for downward balancing energy in the next timeslot 

𝜏 (i.e. buying more energy than P𝑁
𝜏). The method can be directly extended to as many pairs 

as desirable, since our proposed method is generic as it will be clarified shortly. 

 

The mathematical form of the Aggregator’s FlexOffer reads as: 

𝑞𝜏(𝑋𝑁
𝜏 ) = {

𝑏𝑢𝑝
𝜏 (P𝑁

𝜏 − 𝑋𝑁
𝜏 ) , P𝑁

𝜏 − 𝑋𝑁
𝜏 ≥ 0     (3.3𝑎)

𝑏𝑑𝑜𝑤𝑛
𝜏 (𝑋𝑁

𝜏 − P𝑁
𝜏) , P𝑁

𝜏 − 𝑋𝑁
𝜏 < 0

P𝑁
𝜏 − 𝑋𝑁

𝜏 ≤ Bup
𝜏 , P𝑁

𝜏 − 𝑋𝑁
𝜏 ≥ 0              (3.3𝑏)

𝑋𝑁
𝜏 − P𝑁

𝜏 ≤ Bdown
𝜏 , P𝑁

𝜏 − 𝑋𝑁
𝜏 < 0.        (3.3𝑐)

 

 

where 𝑞𝜏(𝑋𝑁
𝜏 )  is the Aggregator’s cost function (for upward and downward balancing 

energy) and (3.3b) and (3.3c) communicate to the TSO that the aggregator can receive a 
dispatch up to Bup

𝜏  (Bdown
𝜏 ) for balancing energy up (down). 

 

The TSO gathers all the bids for balancing energy, including the bid (3.3a)-(3.3c) of the 
aggregator and the set of bids ℬ𝜏  of other market participants, and clears the balancing 
market close to real-time12 by solving an economic dispatch problem that minimizes the 
system’s cost 𝑆𝐶 . The output of the economic dispatch problem is the balancing energy 
dispatch decisions for each market participant and the balancing energy prices 𝜆up

𝜏 , 𝜆down
𝜏  

for upward and downward balancing energy respectively. Note that the system either 
dispatches upward or downward balancing energy, so only one of the two prices is non-zero. 
We denote the balancing energy dispatch of the aggregator as 𝐷𝜏 . Economic dispatch 
problem of the TSO reads as: 

min {𝑆𝐶}                          (3.4)

𝑠. 𝑡.  (3.3𝑎) − (3.3𝑐), ℬ𝜏    

Thus, the aggregator’s dispatch order 𝐷𝜏  depends on its FlexOffer 𝑏𝑢𝑝
𝜏 , 𝑏𝑑𝑜𝑤𝑛

𝜏  through 

problem (3.4). 

 

Upon receiving the dispatch order and the price, the aggregator calculates the power of each 
FlexAsset so as to maximize its profit 𝜋. The procedure is illustrated in the figure below. The 
aggregator receives a revenue 𝜆up

𝜏 ⋅ max{0, (P𝑁
𝜏 − 𝑋𝑁

𝜏 )} from providing balancing energy up 

(or a cost 𝜆down
𝜏 ⋅ max{0, (𝑋𝑁

𝜏 − P𝑁
𝜏)} for down), while in case the aggregator deviates from 

the TSO’s dispatch order, it receives a penalty 𝜆Imb ⋅ |𝑋𝑁
𝜏 − 𝐷𝜏|. Finally, the aggregator pays 

a cost ∑ 𝑐𝑛
𝜏

𝑛∈𝑁 (𝑥𝑛
𝜏 ) to its FlexAssets in order to shape their profile to {x𝑛}𝑛∈𝑁  such that 

                                                
12 In EU’s nordic countries, this timeframe is usually 1 hour, but it is expected to be 15 minutes within the next 
couple of years. The ambition is to be as closest to real time as possible in the future, so the proposed 
mathematical model and machine-learning based algorithmic solution is expected to have an even greater 
impact in the future. 
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equation (3.2) holds. Based on the above, the aggregator’s profit in current timeslot 𝜏, can 
be expressed as: 

𝜋𝜏 = 𝜆up
𝜏 ⋅ max{0, (P𝑁

𝜏 − 𝑋𝑁
𝜏 )} − 𝜆down

𝜏 ⋅ max{0, (𝑋𝑁
𝜏 − P𝑁

𝜏)}

−𝜆Imb ⋅ |𝑋𝑁
𝜏 − 𝐷𝜏| − ∑ 𝑐𝑛

𝜏

𝑛∈𝑁

(𝑥𝑛
𝜏 )             (3.5) 

 

 
Figure 5: Main steps for the realization of FLEXGRID UCS 4.3 in the existing regulatory framework 

 
The aggregator deals with a sequential decision-making problem where, in the first stage of 
current timeslot 𝜏, it decides upon its FlexOffer 𝑏{𝑢𝑝,𝑑𝑜𝑤𝑛}

𝜏 , and in the second stage (after 

receiving its dispatch order), it decides upon the electricity consumption of its DERs {𝑥𝑛
𝜏 }𝑛∈𝑁  

and consequently 𝑋𝑁
𝜏 . The decisions are realized and the procedure repeats in the next 

timeslot. In the first stage decision, the aggregator’s objective is to find the optimal FlexOffer 
𝑏{𝑢𝑝,𝑑𝑜𝑤𝑛}

𝜏  that maximizes its expected profit over the second stage decision {𝑥𝑛
𝜏}𝑛∈𝑁, 𝑋𝑁

𝜏  and 

also over the expected profits of future timeslots. This is formalized through a multi-stage 
stochastic optimization problem that takes a nested form: 

 
where the expectations are over dispatch orders 𝐷𝑡  and prices 𝜆up

𝑡 , 𝜆down
𝑡 , that depend on 

decisions 𝑏𝑢𝑝
𝜏 , 𝑏𝑑𝑜𝑤𝑛

𝜏  through problem (3.4). 

 
Since the aggregator has no information on the bids ℬ𝑡 of other players for the current or 
future timeslots, it cannot tackle problem (3.6) optimally, since it cannot have an expression 
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for the dispatch orders or prices. In what follows, we propose a method through which the 
aggregator can handle this uncertainty upon deciding its FlexOffers in the first stage. 
 
Let us consider a set 𝑆  of arbitrary scenarios 𝑠 ∈ 𝑆  for the aggregator’s dispatch orders, 
constrained by (3.3b) and (3.3c) over the entire horizon 𝑇. Let the sequence of dispatch 

orders for a certain scenario 𝑠  be denoted as 𝐃𝑠 = {𝐷𝑠
1, 𝐷𝑠

2, . . . , 𝐷𝑠
|𝑇|

} . We consider a 
conservative strategy, where, given the dispatch information, the aggregator opts for 
minimizing its total balancing energy and imbalance costs, as in: 

 
 

Using problem (3.7),  we can obtain the optimal variables 𝐗𝑁,𝑠
𝑡,∗  and respective optimal costs 

𝐶𝑠
∗ for each scenario 𝑠. Then, for each scenario, we fix the values of 𝐗𝑁,𝑠

𝑡,∗  and 𝐶𝑠
∗, and solve a 

fitting problem to decide the variables 𝑏𝑢𝑝
𝑡 , 𝑏𝑑𝑜𝑤𝑛

𝑡  for the entire horizon, such that the 

distance between the average aggregator’s cost given by problem (3.7) and the cost given by 
the aggregator’s FlexOffer function (3.3a), is minimized: 

 
 
Using the above method, the Aggregator can retrieve a mapping from input data 
P𝑁 , 𝑐𝑛(𝐱𝑛), 𝐹𝑛 to the decision for its FlexOffers 𝑏{𝑢𝑝,𝑑𝑜𝑤𝑛}

𝜏 . The FlexOffer estimation method 

is summarized in Algorithm 1 below. However, a large number of scenarios may be required 
before a good approximation is achieved, which can be impractical for real-time operation. 
Thus, a Machine Learning (ML) based solution to this problem is described in the next section. 
 

 
 
After receiving the actual dispatch 𝐷𝜏 for the current timeslot from the TSO, the aggregator 
decides upon 𝑋𝑁

𝜏  and {𝑥𝑛
𝜏 }𝑛∈𝑁  by greedily maximizing the profit in the current timeslot, 

assuming that its dispatch for future timeslots 𝑡 > 𝜏 will be 𝐷𝑡 = P𝑁
𝑡 : 
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where �̃�𝑛

𝑡  denotes the decisions made in the previous timeslots (which have to be fixed). 
 

The FlexOffer estimation part of the method described in the previous section is 
computationally expensive. That is because set 𝑆 is exponentially large in the number of 
timeslots of the horizon 𝑇. Thus, many scenarios are needed, where for each scenario the 
aggregator solves an optimization problem (namely (3.7)). Thus, in real-time operation, there 
is no sufficient time to apply the method of the previous section. 
 
In order to solve this problem, we propose the use of Machine Learning (ML) techniques to 
train a decision making system for the aggregator’s FlexOffers. We assume that the 
aggregator knows the form of functions 𝑐𝑛(⋅)  and constraints 𝐹𝑛  and has statistical 
knowledge over their parameters in the form of probability distributions to which these 
parameters abide. The input data of the ML algorithm, denoted as 𝒰 , contains all the 
parameters necessary for defining P𝑁 , 𝑐𝑛(𝐱𝑛), 𝐹𝑛. We run Monte Carlo simulations to obtain 
a set 𝐾 of samples, where each sample 𝑘 ∈ 𝐾 contains a particular instance 𝒰𝑘  of the input 
data. For each sample 𝒰𝑘 , we apply the method described in the previous section to obtain 
the estimated bids 𝑏𝑘,{𝑢𝑝,𝑑𝑜𝑤𝑛}

𝜏 . Thus, using 𝒰𝑘  and 𝑏𝑘,{𝑢𝑝,𝑑𝑜𝑤𝑛}
𝜏  as input and output 

respectively, we can train a ML algorithm. The training procedure is summarized in Algorithm 
2 below. Once trained, the ML algorithm will be able to provide a fast decision on co-efficients 
𝑏{𝑢𝑝,𝑑𝑜𝑤𝑛}

𝜏  for the next timeslot ahead, upon receiving the information on P𝑁 , 𝑐𝑛(𝐱𝑛), 𝐹𝑛 in 

online operation. 
 

 
 
The task at hand is a regression problem. That is, given a specific input, a set of numerical 
values are predicted. Various ML algorithms were tested for this UCS 4.3 problem. In this 
document, we present the two methods that achieved the most promising results, namely, 
Deep Neural Networks (DNNs) and Random Forests (RFs). 
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3.4.1 Deep Neural Networks (DNNs) 

Deep Neural Networks (DNNs) consist of one input layer through which the features are fed 
into the network. A number of hidden layers follows, each one comprised of several neurons. 
The large number of layers in DNNs allows the network to learn complex representations. 
The challenge is to define the number of hidden layers and neurons in order to balance the 
accuracy and the computational complexity of the model. There is no standard formula to do 
this, and a trial-and-error approach is usually required. 
 

3.4.2 Random Forests (RF) 

Random Forests is an ensemble learning method. Ensemble methods use many learning 
algorithms combined. They obtain better predictive performance when compared to any of 
the learning algorithms alone. One ensemble method is bagging of classification or regression 
trees. In this method, successive trees are independently constructed using a bootstrap 
sample of the data set. A majority vote is taken for the final prediction. Bagging improves the 
accuracy and also reduces variance and over-fitting. In random forests, the best split of a 
given node is decided using a predictor chosen randomly from the set of predictors of that 
node. Depending on the specific scenario, they can outperform other regression or 
classification techniques based on support vector machines or neural networks. More 
information about random forests can be found in 17. 
 

3.5.1 Simulation setup and evaluation framework 

To evaluate the proposed method, we consider a setting where the aggregator represents a 
portfolio of 100 flexible loads and a RES generation facility. The method is evaluated for an 
operational horizon of 24 timeslots. A load 𝑛 ∈ 𝑁  features an arrival time arr𝑛  and a 
departure time dep𝑛 . Its feasible interval for energy allocation is denoted as 𝐻𝑛 =
[arr𝑛 , dep𝑛] ⊂ 𝑇. 

 

The portfolio consists of two classes of loads, namely Thermostatically Controlled Loads 
(TCLs) 𝑗 ∈ 𝑁𝑇𝐶𝐿 , including Air-Conditioners, Water Heaters etc., and EVs 𝑖 ∈ 𝑁𝐸𝑉 , where 
|𝑁𝑇𝐶𝐿| = |𝑁𝐸𝑉| = 50 and 𝑁 = 𝑁𝑇𝐶𝐿 ∪ 𝑁𝐸𝑉. For each family of loads, we present the models 
below. 

 

An EV 𝑖 ∈ 𝑁𝐸𝑉  is constrained by an upper and lower power consumption level: 

x𝑖
min ≤ 𝑥𝑖

𝑡 ≤ x𝑖
max    (3.10) 

and it cannot be charged before arrival or after departure: 

𝑥𝑖
𝑡 = 0, 𝑡 ∉ 𝐻𝑖     (3.11) 

 

Moreover, the EV has a certain energy requirement E𝑖 to be fulfilled. When the total charged 
energy upon departure is less than E𝑖, the end user bears a cost: 
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𝑐𝐸𝑉(𝐱𝑖) =

{
0, |∑ h𝑖𝑡∈𝑇 ⋅ 𝑥𝑖

𝑡 − E𝑖| ≤ tol𝑖

w𝑖 ⋅ (∑ h𝑖𝑡∈𝐻𝑖
⋅ 𝑥𝑖

𝑡 − E𝑖)
2

, |∑ h𝑖𝑡∈𝑇 ⋅ 𝑥𝑖
𝑡 − E𝑖| > tol𝑖

    (3.12) 

 

where tol𝑖 is a tolerance level, h𝑖 is the EV’s charging efficiency, and w𝑖 is the load’s elasticity 
parameter. Observe that the EV’s cost function exhibits inter-temporal couplings, since the 
cost of the EV is only realized at its departure timeslot dep𝑖 , but is, however, dependent on 
the charging decisions of all previous timeslots. 

 

For TCL 𝑗 ∈ 𝑁𝑇𝐶𝐿 let 𝜃𝑗
𝑡  denote the temperature measured by the TCL’s sensor. The transition 

function of the temperature is defined as: 

𝜃𝑗
𝑡 = 𝜃𝑗

𝑡−1 + ins𝑗(θenv
𝑡 − 𝜃𝑗

𝑡−1) − con𝑗𝑥𝑗
𝑡−1    (3.13) 

 

where θenv
𝑡  is the environment’s temperature, ins𝑗  is a parameter related to temperature 

decay (e.g. insulation) and con𝑗  is a conversion factor (from electrical power to thermal 

energy). Similarly to constraints (3.10) and (3.11), for TCLs we have: 

x𝑗
min ≤ 𝑥𝑗

𝑡 ≤ x𝑗
min     (3.14) 

𝑥𝑗
𝑡 = 0, 𝑡 ∉ 𝐻𝑗      (3.15) 

 

where 𝐻𝑗  is the TCL’s operation interval. The TCL has a setpoint θsp,𝑗
𝑡 , which represents the 

user’s target temperature. Similarly to EVs, the TCL’s cost function is defined as: 

𝑐𝑇𝐶𝐿(𝐱𝑗) =

{
0, |𝜃𝑗

𝑡 − θsp,𝑗
𝑡 | ≤ tol𝑗

∑ w𝑗𝑡∈[arr𝑗,dep𝑗] ⋅ (𝜃𝑗
𝑡 − θsp,𝑗

𝑡 )
2

, |𝜃𝑗
𝑡 − θsp,𝑗

𝑡 | > tol𝑗

     (3.16) 

 

The aggregator also features local RES generation facilities, with a generation profile R =

{R1, R2, . . . R|𝑇|}. In order to obtain realistic values for P𝑁, each FlexAsset’s intended demand 
p𝑛

𝑡  for each timeslot, is set to the value that incurs minimum cost to the FlexAsset (assuming 
no balancing actions by the aggregator), i.e. 

 
 

Thus, the Aggregator’s net demand profile P𝑁  under no flexibility actions is defined by: 

 
 

Having defined parameters P𝑁 , cost functions 𝑐𝑛(𝐱𝑛) and the feasible sets for 𝐱𝑛 , we can 
now apply the ML-based methods proposed in the previous section. Specifically, parameters 
θenv

𝑡 , R𝑡 , arr𝑛
𝑡 , dep𝑛

𝑡 , E𝑖, θsp,𝑗
𝑡 , w𝑛 are the features together with P𝑁. 
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Now, we evaluate the proposed ML-based method for the case study presented above. The 
EVs’ charging efficiency, h𝑖, follows a uniform distribution between 94% and 100%, while the 
parameter con𝑗  is uniformly sampled from the interval [3, 4]. The average outdoor 

temperature θenv(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) is assumed to follow the temperature of a typical summer day 
in southern Europe: θenv

0 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒) = 83 F and θenv
𝑡 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒) = θenv

𝑡−1(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) + 3 F, 
assuming a simulation horizon of 24  timeslots, that represents quarterly intervals from 
morning to noon. The actual value for θenv

𝑡  follows a normal distribution around the 
respective value of θenv

𝑡 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒) , with a standard deviation of 3  F. The local RES 
production for each timeslot is sampled from a normal distribution with mean values starting 
from 2 kWh and increasing by 2 kWh in every next timeslot. The standard deviation for each 
timeslot is set equal to 0.25 kWh of the respective mean value. The quantities Bup

𝑡 , Bdown
𝑡  

were set equal to 0.1P𝑁
𝑡 . The rest of the simulation setup’s parameters are sampled from 

normal distributions, as those are defined in the table below. Finally, upon solving the 
optimization problem of the method, the absolute values were linearized by using an 
auxiliary variable. 

 

Table 4: Summary of values/distributions of simulation setup’s parameters 

Parameter Comments Value Average Value Standard deviation 

x𝑛
min ∀𝑛 0 - - 

x𝑖
max for EVs - 3 0.1 

x𝑗
max for TCLs - 5 0.5 

arr𝑖 for EVs - 4 2.5 

arr𝑗  for TCLs - 3 1 

dep𝑖  for EVs - arr𝑛 + 4 1 

dep𝑗  for TCLs |𝑇| - - 

E𝑖 - - x𝑖
max(dep𝑖 − arr𝑖) − 2 0.5 

ins𝑗  - - 0.05 0.01 

θsp,𝑗
𝑡  - - 77 1 

w𝑛 ∀𝑛 - 0.5 0.1 

 

3.5.1.1 Wholesale Energy Market Model (WEMM) 

In order to evaluate the proposed method, we use a model through which the wholesale 
electricity market receives the FlexOffer of the aggregator and decides whether it is going to 
request balancing energy (up or down) from the aggregator. In reality, this decision is made 
by problem (4), where the FlexOffers from all market participants are taken into account. 
However, since we are only interested in the aggregator’s dispatch, for the scope of the 
FLEXGRID UCS 4.3, we abstract away the complete market model and construct a Wholesale 
Energy Market Module (WEMM) that provides decisions only on the aggregator’s dispatch 
and the balancing energy price 𝜆𝜏 for the current timeslot 𝜏. 

 

In case the aggregator is called to offer balancing energy up (i.e. reduce load), it follows that 
price 𝜆𝜏 is higher than its offer 𝑏𝑢𝑝

𝜏 . In this case, the WEMM randomly generates a price that 

is within the interval [𝑏𝑢𝑝
𝜏 , 𝜆𝑚𝑎𝑥], where 𝜆𝑚𝑎𝑥  is the administrative upper bound for the 

balancing energy price. In case the aggregator is called to buy balancing energy down (i.e. 
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increase load), it follows that price 𝜆𝜏 is lower than its offer 𝑏𝑑𝑜𝑤𝑛
𝜏 . In this case, the WEMM 

randomly generates a price that is within the interval [𝜆𝑚𝑖𝑛 , 𝑏𝑑𝑜𝑤𝑛
𝜏 ] , where 𝜆𝑚𝑖𝑛  is the 

administrative lower bound. Parameters 𝜆𝑚𝑖𝑛 , 𝜆𝑚𝑎𝑥  are set to zero and 20  cents 
respectively. The model for the WEMM is described in the following procedure: 

1. First, the WEMM receives the aggregator’s FlexOffers 𝑏𝑢𝑝
𝜏  and 𝑏𝑑𝑜𝑤𝑛

𝜏  for the timeslot 

ahead. 

2. The module randomly decides if it is going to need upward or downward balancing 
energy, with equal probability unless stated otherwise. 

3.  

a. for upward balancing energy (the aggregator reduces its load): The aggregator 
is not called, (i.e., requested to follow its market schedule, 𝐷𝜏 = P𝑁

𝜏 ) with 
probability ϱ𝑢𝑝,𝑜𝑢𝑡 = 𝑚𝑎𝑥{1, 𝑏𝑢𝑝

𝜏 /𝜆𝑚𝑎𝑥}. On the other hand, the aggregator 

is called to offer balancing energy Bup
𝜏 , i.e. 𝐷𝜏 = P𝑁

𝜏 − Bup
𝜏 , with probability 

ϱ𝑢𝑝,𝑖𝑛 = 1 − ϱ𝑢𝑝,𝑜𝑢𝑡 , at a price 𝜆𝑢𝑝
𝜏 , which is picked randomly from the 

interval [𝑏𝑢𝑝
𝜏 , 𝜆𝑚𝑎𝑥]. 

b. for downward balancing energy (the aggregator increases its load): The 
aggregator is called to offer balancing energy down Bdown

𝜏  (i.e., 𝐷𝜏 = P𝑁
𝜏 +

Bdown
𝜏 ) with probability ϱ𝑑𝑜𝑤𝑛,𝑖𝑛 = 𝑚𝑎𝑥{1, 𝜆𝑚𝑖𝑛/𝑏𝑑𝑜𝑤𝑛

𝜏 } , at a price 𝜆𝑑𝑜𝑤𝑛
𝜏 , 

which is picked randomly from the interval [𝜆𝑚𝑖𝑛 , 𝑏𝑑𝑜𝑤𝑛
𝜏 ] . Finally, the 

aggregator is not called, (i.e., requested to follow its market schedule 𝐷𝜏 =
P𝑁

𝜏) with probability ϱ𝑑𝑜𝑤𝑛,𝑜𝑢𝑡 = 1 − ϱ𝑑𝑜𝑤𝑛,𝑖𝑛. 

 

The procedure through which the setup is simulated is described in Algorithm 3 below: 

 
 

3.5.1.2 Machine learning methods 

We assumed 1000 samples to generate a single case of mapping from the defined set of 
features to the optimal bids 𝑏𝑢𝑝

𝜏 , 𝑏𝑑𝑜𝑤𝑛
𝜏 . We evaluated the ML algorithms for a total of 1000 

cases. We considered 2-fold cross validation with 3 repeats. The accuracy metric is the mean 
absolute error and the standard deviation of the errors. 

Regarding the Deep Neural Networks (DNN) method, we used the Keras deep learning library 
along with tensorflow. The architecture that we considered is the following: an input layer, 
seven hidden layers and one output layer. The number of neurons of the input layer and of 
the hidden layers is equal to the number of features. In the hidden layers, we assumed a 
dropout rate equal to 0.2. The number of neurons of the output layer is equal to the number 
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of coefficients 𝒃𝒖𝒑
𝝉 , 𝒃𝒅𝒐𝒘𝒏

𝝉 . We chose the rectifier activation function for the hidden layers 

and the Adam optimization algorithm. Finally, we considered 1000 epochs. 

As of the Random Forests (RF) method, we used the Random Forests regressor from the 
Scikit-Learn library. The number of trees in the forest is 100. The nodes are expanded until 
all leaves are pure or until all leaves contain less than 2 samples. The minimum number of 
samples required to be at a leaf node is 1. 

 

3.5.2 Performance evaluation results 

In the next subsections, we perform various experiments and simulations with respect to 
various Key Performance Indicators (KPIs): 

 

3.5.2.1 Comparison of the proposed ML methods 

In the table below, we present the mean and the standard deviation of the score (defined as 
the Mean Absolute Error - MAE) of the ML algorithms for the aforementioned scenarios. We 
notice that both algorithms are sufficiently accurate even with a relatively low amount of 
training cases. RFs perform a bit better than DNNs, but the difference is not very large to be 
deemed significant. Once the data is generated, DNNs require a training time of 60 seconds 
on a Quad Core CPU at 4 GHz, while RFs require 10 seconds. Note that these running times 
refer to the training phase. The resulting estimations require much less time (around 0.11 
seconds) to provide a bid estimate. Thus, both models are suitable for dynamic scenarios to 
promptly acquire an efficient FlexOffer decision. 

Table 5: Accuracy of ML Algorithms 

Algorithm Mean Standard Deviation 

DNN 0.27 0.005 

RF 0.29 0.004 

 
 

3.5.2.2 Aggregator’s profits 

Algorithm 3 was run for a number of different cases for the imbalance price 𝜆𝐼𝑚𝑏 . More 
specifically, the setting was simulated for 𝜆𝐼𝑚𝑏 = {0,5,10, . . . ,40}. For each value of 𝜆𝐼𝑚𝑏, a 
number of setting instances were simulated and the results on the aggregator’s profits were 
averaged out over all instances. The figure below shows the resulting average aggregator’s 
profits as a function of 𝜆𝐼𝑚𝑏. The aggregator’s profits are always positive. This is not trivial, 
since if the aggregator does not submit FlexOffers in the balancing market and follows its 
day-ahead market schedule, it obviously makes zero profit, and if the bidding method 
performed poorly (e.g. resulted in major imbalances or FlexAsset costs), the aggregator’s 
profit could even be negative. 
 
As it can be observed, the aggregator’s profits decline for higher values of 𝜆𝐼𝑚𝑏. However, 
the curve gradually stabilizes, especially after 𝜆𝐼𝑚𝑏  surpasses 𝜆𝑚𝑎𝑥 , which means that as 
𝜆𝐼𝑚𝑏 increases, the profits are no longer affected significantly by 𝜆𝐼𝑚𝑏. The reason for this, is 
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that for 𝜆𝐼𝑚𝑏 > 𝜆𝑚𝑎𝑥, the aggregator opts for minimizing its imbalances. Thus, the fact that 
the profits are not affected by 𝜆𝐼𝑚𝑏 after a certain point, means that the aggregator succeeds 
in minimizing imbalances, which in turn indicates that the proposed ML method achieves a 
very good capturing of the aggregator’s flexibility cost, i.e., the FlexOffers made by the 
proposed ML method do not result in dispatch decisions that the aggregator cannot 
eventually follow. 
 

 
Figure 6: Aggregator’s profit as a function of the imbalance price 

 

3.5.2.3 Imbalances 

In order to verify the indication of the previous subsection and further elaborate on the 
previous results, we estimated the probability that the aggregator’s FlexOffer results in a 
dispatch order, which the aggregator does not prefer to follow. This can happen when the 
flexibility costs of the FlexAssets for following the dispatch, are higher than the imbalance 
price (which, in turn, means that the estimate of flexibility costs by the ML algorithm was not 
good). The setting was simulated for different values of parameter tol𝑛  (the same for all 
FlexAssets). For each value of tol𝑛, we conducted a number of 1000 simulations and counted 
the number of experiments in which an imbalance occurred (no matter how small). The 
probability of imbalance was estimated as the number of experiments with imbalances, 
divided by 1000, and is depicted in the figure below for different values of tol𝑛. 
 

 
Figure 7: Estimated probability of imbalance for different values of the tolerance level 𝐭𝐨𝐥𝒏 
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3.5.2.4 Flexibility aggregation 

In this subsection, we examine how well the proposed flexibility aggregation algorithm 
captures the FlexAssets’ flexibility level. In order to control the overall flexibility of the 
FlexAssets via a single parameter, we use the tolerance tol𝑛. A lower value of tol𝑛 means 
lower flexibility for the set of FlexAssets, since their cost functions (12) and (16) are activated 
more easily. In contrast, a high tol𝑛 , gives the aggregator more flexibility to shape the 
FlexAssets’ profiles without suffering flexibility costs. The figure below presents the resulted 
aggregator’s FlexOffers (averaged over all timeslots) for different values of tol𝑛. The figure 
verifies that for higher values of tol𝑛, the method is able to capture the increased flexibility 
of the FlexAssets, since it results in lower FlexOffer. Note that a lower FlexOffer means that 
the aggregator is more likely to be dispatched (even for a lower price), therefore it 
communicates to the TSO that the aggregator is more flexible towards offering balancing 
energy. 

 
Figure 8: Average aggregator’s offers/bids for different levels of FlexAsset flexibility 

 

3.5.2.5 FlexOffer behavior 

 
Figure 9: Aggregator’s offers/bids for each timeslot 
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For the purposes of this experiment, we modified the WEMM to always ask from the 
aggregator to offer balancing energy up (curtail load). Thus, the aggregator curtails energy 
consumption and in every next timeslot, it is asked to curtail again. The figure above shows 
how the aggregator’s FlexOffers 𝑏𝑢𝑝

𝑡 , 𝑏𝑑𝑜𝑤𝑛
𝑡  are affected in this case along the time horizon. 

The results indicate that when the aggregator is asked to curtail energy in a given timeslot, 
the proposed method increases the requested price for further curtailment in the next 
timeslot and, after a certain point, increases also the aggregator’s FlexOffer to buy balancing 
energy. After a certain point in time, this phenomenon is counter-balanced by the departure 
of many EVs (and the arrival of new ones), which is why the offer/bid prices do not further 
increase after that point.  
 

Within M19-M26, we will elaborate on the UCS 4.3 work in order to convey more system-
level simulations to evaluate the performance of our proposed algorithms for the Distribution 
Level Flexibility Markets (DLFM), too. As already mentioned above, in this report we decided 
to focus on the TSO’s balancing energy market, which represents the existing regulatory 
conditions in most EU countries, today. In the next months, we will focus on the aggregator’s 
participation in near-real-time DLFM.  

 

This work is closely inter-related with UCS 2.3, which refers to ESP’s stacked revenue 
maximization by its participation in several markets, such as: i) day-ahead energy market 
operated by MO, ii) day-ahead reserve market operated by TSO, iii) day-ahead DLFM 
operated by FMO, iv) near-real-time DLFM operated by DSO, and v) near-real-time balancing 
market operated by TSO. Therefore, we will provide more performance evaluation results 
showcasing the optimal FlexOffers made by an aggregator in order to co-optimize its 
participation in all the above-mentioned markets.  

 

Another research task, which is also related with respective WP6 work is to integrate the 
proposed FlexOffer creation algorithm into the Automated Flexibility Aggregation Toolkit 
(AFAT) and FLEXGRID ATP. Thus, the aggregator user will be able to utilize the AFAT to make 
efficient FlexOffers in near-real-time balancing markets and DLFMs. In the online operation 
mode, the aggregator will be able to automatically create a FlexOffer in real-time (in order to 
submit it in the ATP) based on the current availability of FlexAssets (cf. FlexContract per 
FlexAsset that denotes the available reserve capacity). In the offline operation mode, the 
aggregator will be able to run “what-if” scenarios to see whether it is more beneficial to 
participate in the existing TN-level balancing market or DN-level balancing market (i.e. 
DLFM). If the FlexOffer is not accepted in DLFM, it can be automatically forwarded to the 
TSO’s balancing market via a respective Application Programming Interface (API). 
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4  An aggregator operates an ad-hoc B2C 
flexibility market with its end energy 
prosumers by employing advanced pricing 
models and auction-based mechanisms 

This chapter deals with the research problem of UCS 4.2. In FLEXGRID, we propose a novel 
B2C flexibility market architecture through which an aggregator will be able to optimally 
operate a market in which the various small-scale distributed FlexAssets (DFAs) compete with 
each other. In particular, we draw on concepts of mechanism design theory in order to define 
an iterative, auction-based mechanism, consisting of an allocation rule and a payment rule. 
The allocation rule refers to the way that the aggregator decides upon how much 
consumption reduction/increase will be allocated to each end user (i.e. energy prosumer) 
according to the feedback obtained through the auction process. The payment rule refers to 
the way the aggregator decides upon the reward of each user for his/her allocation, provided 
that the end user makes the corresponding contribution. Through the auction procedure, the 
aggregator exchanges messages with the end users in the form of queries. A query in our 
case is a price signal communicated from the aggregator to the end user, to which the end 
user responds with his/her preferred action (e.g. consumption reduction) according to this 
signal. A main research novelty of our proposed work is that we consider the case in which 
an end user may respond untruthfully if he/she finds that to be in his/her interest. 
 

Within FLEXGRID UCS 4.2 context, we propose advanced retail market mechanisms 
(ARMM) that can be used by an aggregator in order to operate a novel B2C flexibility 
market architecture. Our ultimate goal is to integrate the most important research 
algorithms in the FLEXGRID ATP (TRL 5) and more specifically in the Automated Flexibility 
Aggregation Toolkit (AFAT).  
 
Through AFAT, the aggregator user will be able to run various “what-if” simulation 
scenarios (offline operation) in order to determine better ways (via retail pricing 
schemes) to operate a novel B2C flexibility market, in which end energy prosumers 
compete with each other. In other words, the aggregator will run a retail pricing algorithm 
to test and evaluate the impact that new FlexContracts (with its end users) would have on 
several KPIs such as: i) aggregator’s revenues, ii) aggregated end users’ welfare, iii) quantity 
of flexibility offered to the system, iv) individual end user’s welfare. 
 
Based on the AFAT’s results (TRL 5), the aggregator user will be able to intelligently 
identify how it can recommend a new (more beneficial) FlexContract to a set of end 
energy prosumers. This novel FLEXGRID service is expected to help the aggregator to 
realize deep relationship with its customer portfolio and thus make it more competitive in 
the future retail/B2C flexibility markets.  
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In an environment with high RES penetration, an important asset is the load flexibility at the 
demand side. More precisely, Distributed Flexibility Assets (DFAs) are distributed ESS and 
smart devices that exhibit flexibility in their energy demand (e.g. EVs and HVAC units). DFAs 
are envisaged to participate in electricity markets through energy aggregators. Academic 
research was quick to design optimization and control methods for extracting the value of 
DFAs. However, actual end-user engagement and adoption of real-life commercial 
applications are yet to catch up. A significant barrier has been the lack of intelligent agents 
that negotiate with aggregators on behalf of the end user and deliver an attractive trade-off 
between consumption profile and energy bill reduction. However, advanced modelling tools 
and advancements in digital economies are ready to facilitate real time market interaction 
between intelligent end user agents and intelligent aggregator agents. In this way, 
aggregators can buy flexibility from DFAs in order for the former to be able to enhance their 
position in B2B markets and increase their profitability, while also offering services to the 
grid operators.  

 

In FLEXGRID, we consider B2B flexibility markets in which the system operators (i.e. DSO/TSO) 
are FlexBuyers, while aggregators are FlexSuppliers. Moreover, we also assume ad-hoc B2C 
flexibility markets (or else retail flexibility markets) operated by an aggregator entity, in which 
end energy prosumers compete with each other. In order to design such B2C flexibility 
markets in an efficient way, novel Market Mechanisms (MMs) need to be designed. A MM 
includes the bidding protocols for the market participants and the rules of market operation, 
namely an allocation rule and a pricing rule. Traditional, static retail pricing schemes are not 
able to capture the dynamics of the electricity network and thus traditional utilities fail to 
catch up with the new needs of the energy market. In contrast, dynamic MMs are needed in 
order to efficiently manage DFAs.  

 

A Market Mechanism (MM) can be: i) Iterative: Traditional time-of-use (TOU) MMs are open-
loop, in the sense that the end user is insulated from the other users’ actions (this lack of 
feedback and coordination between users is a major source of instability) and ii) Online: 
There is inherent uncertainty in the electricity grid, partly because of imperfect forecasts 
about the inflexible part of user demand and partly because of uncertainty in the supply side. 
A dynamic MM needs to be able to adjust to online signals in real-time. On the other hand, 
dynamic/intelligent MMs need a corresponding intelligence on the end user side in order to 
function. For example, an end user that is manually making decisions cannot catch up with 
an iterative and online MM. This means that intelligent agents have to be developed on the 
end user’s side, so as to negotiate on the user’s behalf. 

 

From a research perspective, Market Mechanisms (MMs) for electricity grids can be 
generally evaluated through seven requirements (KPIs): 
1. Optimality/efficiency: The difference between the value that users give to their Energy 

Consumption Curves (often called utility function) and their energy cost (this difference 
is noted in the international literature as Social Welfare). 
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2. Incentive Guarantees/Strategy proof: The resilience of the system to end users who 
benefit from declaring false preferences. 

3. Privacy protecting: The quantity of information that is required from the end user. 
4. Convergence/scalability: The speed of convergence of MMs and its scalability with 

respect to the number of end users. 
5. Fairness: The policy for distributing the energy costs and awards to energy consumers 

should be fair so that it is also able to trigger behavioural changes (e.g. participation in 
flexibility markets). For example, end users would be unwilling to participate to Demand 
Response events if not-participating or cheating end users benefit from them. 

6. Competitiveness/sustainability: The MM should offer to the end users (prosumers) 
attractive charges with respect to their Energy Consumption Curve (ECC), while being 
practically implementable/realizable. 

7. Externalities: Other positive/negative outcomes of the MM (e.g., controllability in order 
to satisfy system-wide constraints, simplicity for end users to understand the mechanism, 
etc.). 

 
A detailed survey on related works from the international literature is provided in section 5.2 
of the previous D3.113, so the interested reader can refer to this document for extensive 
details. This survey work identified all related research ideas for deploying advanced retail 
pricing schemes and market mechanisms in the modern electricity markets. Here, we 
summarize the FLEXGRID’s contributions and novelties.  
 

Within the FLEXGRID context, we propose a novel B2C flexibility market operated by an 
aggregator, which deals with all the afore-mentioned requirements (or else KPIs) as 
follows:  

1. Regarding “optimality/efficiency” KPI, we prove that our proposed scheme 
achieves the Vickrey-Clarke-Groves (VCG) outcome. VCG mechanism is broadly 
considered as the cornerstone mechanism design as it is provably the unique 
mechanism that achieves the optimal social welfare. Thus, our proposed scheme 
does not sacrifice efficiency at all to satisfy other KPIs. 

2. As of “incentive guarantee/strategy proof” KPI, our scheme satisfies the 
Dominant-Strategy-Incentive-Compatibility (DSIC) property, which is considered 
the strongest incentive guarantee in the international literature.   

3. Regarding the “privacy protecting” KPI, our proposed scheme is suitable for a 
distributed implementation unlike the centralized optimization solution that has 
already been analyzed in UCS 4.1 in chapter 2 of this document. In other words, this 
means that the end energy prosumers do not have to reveal their utility functions 
(or else sign any binding FlexContract with the aggregator), but just respond to the 
retail/B2C flexibility market price signals sent by the aggregator in an online 
fashion.    

4. Regarding the “convergence/scalability” KPI, we also prove both analytically and 
via system-level simulations (cf. section 4.5 below) that our proposed algorithmic 
solution converges quickly for a large number of end energy prosumers that 
participate in the B2C flexibility market. 

                                                
13 https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf  

https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf
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5. With the term “fairness”, we refer to the problem of state-of-the-art Real Time 
Pricing (RTP) schemes, which do not strongly motivate end energy prosumers to 
modify their electricity consumption habits. This happens mainly due to the fact 
that in each given timeslot, all end users get the same real-time price, namely both 
flexible and inflexible end users will get the same reward for this given timeslot. 
Our proposed market mechanism is based on our previously published work on a 
Behavioral RTP (B-RTP) scheme14 that offers an easily adjustable level of financial 
incentives to end users by fairly rewarding the desirable behavioral electricity 
consumption changes. 

6. As of “competitiveness/sustainability” KPI, via our proposed scheme, the 
aggregator can configure two basic parameters (i.e. ‘γ’ and ‘p’ parameters). ‘γ’ 
parameter defines the level of price-based incentives provided to each end user 
towards behavioral change, while ‘p’ parameter denotes the percentage of 
aggregator’s revenues that will be distributed to end users, while the residual 
amount of revenues will be kept as aggregator’s profits. Hence, the aggregator can 
easily adjust these parameters in order to be able to adapt to the ongoing 
conditions of its business (e.g. when the competition with other aggregators is 
harsh, then it can keep less profits for itself and distribute more financial rewards 
to flexible end energy prosumers). 

7. Finally, as an “externality” KPI, the proposed scheme is transparent to any type of 
FlexRequest that needs to be satisfied. For example, a FlexRequest can be created 
by: i) a DSO to deal with local congestion and voltage control issues, ii) a TSO to deal 
with transmission network level imbalances, iii) the aggregator itself to deal with 
its internal portfolio’s imbalances, iv) a BRP to deal with its imbalances in a given 
geographical area under its balancing responsibility, etc. This functionality is very 
important for the proposed B2C flexibility market as it can be easily integrated with 
the structure and respective needs of the B2B flexibility markets realized in 
FLEXGRID ATP, too.       

 

Within FLEXGRID project’s context, we consider a novel B2C flexibility market comprised of 
an aggregator and a set 𝒩 ≜ {1,2, … , 𝑛}  of 𝑛  self-interested end energy prosumers, 
hereinafter referred to as end users. We also consider a discrete representation of time, 
where continuous time is divided into timeslots 𝑡 ∈ 𝒯 of equal durations 𝑠, where set 𝒯 ≜
{1,2, … , 𝑚}  represents the scheduling horizon. Each end user possesses a number of 
controllable appliances, with each appliance bearing an energy demand. If the consumptions 
of different appliances are not coupled (independent of each other), the appliances can 
participate in the FlexRequest (or else DR event) virtually as different end users. The bills of 
an end user’s appliances will add up to calculate the bill of the actual end user. Thus, 
throughout this chapter, we can consider one appliance per end user for ease of 
presentation. 

                                                
14 K. Steriotis, G. Tsaousoglou, N. Efthymiopoulos, P. Makris, E. Varvarigos, “A Novel Behavioral Real Time Pricing 
Scheme for the Active Energy Consumers’ Participation in Emerging Flexibility Markets”, Elsevier Sustainable 
Energy, Grids and Networks (SEGAN) Journal, vol. 16, pp. 14-27, Dec 
2018, https://www.sciencedirect.com/science/article/pii/S2352467718300201. 
 

https://www.sciencedirect.com/science/article/pii/S2352467718300201
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4.2.1 End user’s energy consumption model and utility function 

An appliance requires an amount of energy for operation. For example, if an appliance’s 
operating power is 1Watt, and 𝑠 = 1 hour, then the energy that the appliance consumes in 
one timeslot of operation is 1𝑊ℎ. This energy consumption is measurable in real-time and 
can be shed upon request, in exchange for monetary compensation. Such a request for 
consumption modification may be called a FlexRequest that is published in a S/W platform 
or else online marketplace like the FLEXGRID ATP that is developed within FLEXGRID WP6 
context. In cases where a FlexRequest is scheduled ahead of time, a strategic end user can 
falsely claim that he/she intended to consume energy at the time of the FlexRequest and that 
he/she “reduced” consumption in response to the FlexRequest, while in reality he/she never 
intended to consume energy in that time. However, in this work, we deal with a real-time DR 
process. Each end user’s consumption is measured in real-time, and, when a FlexRequest 
occurs, the end user’s curtailment is measured against his/her last real-time consumption 
measurement and not against the end user’s declared intended consumption. Thus, the 
consumption measurement is taken before the FlexRequest, so the end user cannot 
manipulate it since he/she does not know when a FlexRequest is going to occur. The high-
level system model that we consider in this UCS is illustrated in the figure below. 

 
Figure 10: System model for FLEXGRID UCS 4.2 

 
A request for consumption reduction (i.e. FlexRequest) is made by some third party (e.g. the 
DSO/TSO) along with the respective reward function (i.e. price/quantity curve) and the 
aggregator takes on the task of providing the requested service by setting up a B2C flexibility 
market among the end energy prosumers of its portfolio. Upon a FlexRequest in timeslot 𝑡, 
the aggregator offers a per-unit reward to the end users for consumption reduction. User 𝑖 
can respond by reducing his/her consumption by a quantity 𝑞𝑖

𝑡, assumed to be positive (𝑞𝑖
𝑡 ≥

0), without loss of generality. As described earlier and also in chapter 5 of previous D3.1, the 

decisions for 𝑞𝑖
𝑡 can be taken by an intelligent agent (on behalf of the actual end user and 
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according to the end user’s preferences) in order to disengage the actual end user from real-
time participation. 
 

The consumption reduction 𝑞𝑖
𝑡  is characterized by its feasible set 𝑄𝑖  (defined by a set of 

constraints on 𝑞𝑖
𝑡) and the discomfort function 𝑑𝑖(𝑞𝑖

𝑡) of end user 𝑖. The discomfort function 
is private to each end user and expresses the minimum compensation in monetary units 
(euros) that an end user requires, in order to reduce his/her consumption by the 

corresponding amount. The discomfort, as a function of 𝑞𝑖
𝑡, can take various forms depending 

on the appliance. We make the following assumptions on the form of function 𝑑𝑖(𝑞𝑖
𝑡): 

 
Assumption 1. Zero consumption reduction, brings zero discomfort to the user: 𝑑𝑖(0) = 0 
 

Assumption 2: The discomfort function is convex, so that additional increase of 𝑞𝑖
𝑡  brings 

increasing discomfort to the user: 
𝑞𝑖𝐴

𝑡 ≥ 𝑞𝑖𝐵
𝑡  ⇔  𝑑𝑖(𝑞𝑖𝐴

𝑡 + 𝜀) −  𝑑𝑖(𝑞𝑖𝐵
𝑡 + 𝜀) ≥ 𝑑𝑖(𝑞𝑖𝐴

𝑡 ) − 𝑑𝑖(𝑞𝑖𝐵
𝑡 ), ∀𝜀, 𝑞𝑖𝐴

𝑡 , 𝑞𝑖𝐵
𝑡 > 0.  

 
Detailed example appliance models (including operational constraints) are described in 

section 4.5 below. Nevertheless, the discomfort function 𝑑𝑖(𝑞𝑖
𝑡)  is kept general for the 

moment in order to emphasize that the theoretical results to be presented in the following 
sections are valid for any end user model that satisfies the assumptions above.  
 
In order to incentivize end users towards reducing their consumption, the aggregator offers 

a reward 𝑟𝑖(𝑞𝑖
𝑡). An end user’s utility is defined as the difference between his/her discomfort 

for the consumption reduction realized and the reward he/she receives for achieving this 
reduction: 

𝑈𝑖 = ∑ [𝑟𝑖(𝑞𝑖
𝑡) − 𝑑𝑖(𝑞𝑖

𝑡)]𝑡∈𝒯  .   (4.1) 
 

In order to offer the rewards 𝑟𝑖(𝑞𝑖
𝑡), the aggregator draws on the reward offered by the 

FlexBuyer that requests the reduction (i.e. FlexRequest), as described in the following 
subsection. 
 

4.2.2 FlexRequest and the aggregator’s problem 

Let 𝐿𝑡  denote the aggregated consumption of all end users in  

𝒩, as seen by the FlexBuyer, within a certain time interval 𝑡. The energy cost is modeled as 

a quadratic function of 𝐿𝑡: 

𝐶𝑡 = 𝑐1𝐿𝑡 + 𝑐2(𝐿𝑡)2 
 

Upon a new FlexRequest, the FlexBuyer asks for a reduction of the end users’ aggregated 

consumption and offers monetary incentives to the aggregator towards its realization. Let 𝐷𝑡  

denote the reduction from baseline consumption 𝐿𝐵
𝑡  to consumption 𝐿𝐵

𝑡 − 𝐷 at time interval 

𝑡. The respective cost reduction is: 

  

𝐶(𝐿𝐵
𝑡 ) − 𝐶(𝐿𝐵

𝑡 − 𝐷) = 𝑐1𝐿𝐵
𝑡 + 𝑐2(𝐿𝐵

𝑡 )2 − 𝑐1(𝐿𝐵
𝑡 − 𝐷) − 𝑐2(𝐿𝐵

𝑡 − 𝐷)2 
which reads: 

 

𝐶(𝐿𝐵
𝑡 ) − 𝐶(𝐿𝐵

𝑡 − 𝐷) = (𝑐1 + 2 ∗ 𝑐2 ∗ 𝐿𝐵
𝑡 ) ∗ 𝐷 − 𝑐2𝐷2 
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We set 𝑎 = 𝑐1 + 2 ∗ 𝑐2 ∗ 𝐿𝐵
𝑡   and 𝑏 = 𝑐2 and the cost benefit 𝐶(𝐿𝐵

𝑡 ) − 𝐶(𝐿𝐵
𝑡 − 𝐷) is denoted 

as a reward function 𝑅(𝐷): 

 

𝑅𝑡(𝐷𝑡) = 𝑎 ∙ 𝐷𝑡 − 𝑏 ∙ (𝐷𝑡)2,   𝐷𝑡 ∈ [0, 𝐿𝑡],   (4.2) 

 

where 𝑎, 𝑏 are positive parameters with 𝑎 ≥ 2𝑏𝐿𝑡 so that it is an increasing function in the 

range of permitted values. The proposed B2C flexibility market architecture is open to any 

other choice of 𝑅𝑡(𝐷𝑡), provided it is an increasing and concave function. Thus, we assume 

that upon a FlexRequest, the FlexBuyer offers a marginal per-unit reward for a reduction of 

𝐷𝑡  units. 

𝜇 =
𝑑(𝑅𝑡(𝐷𝑡))

𝑑(𝐷𝑡)
  (4.3) 

 
The aggregator is responsible for aggregating the end users’ participation in the FlexRequest, 
coordinating their actions, and dividing the compensation profits (rewards) among the end 
users. We assume a communication network, built on top of the electricity grid, through 
which the aggregator can exchange messages with the end users in an iterative and online 
fashion as already explained above. 
 

With respect to the system model described above, we would like to facilitate the allocation 
of consumption reduction among the end users to maximize social welfare. Social welfare is 
defined as the difference between the revenues 𝑅𝑡(𝐷𝑡) that the aggregator receives from 
the FlexBuyer for the consumption curtailment 𝐷𝑡, as defined in Eq. (4.2), and the sum of the 
discomforts that this curtailment causes to its end users.  This problem can be formulated 
from Eqs. (4) and (5) below: 

 

𝐦𝐚𝐱
𝑞𝑖

𝑡∈Q𝑖,𝑖∈𝒩
{𝑅𝑡(𝐷𝑡) − ∑ [𝑑𝑖(𝑞𝑖

𝑡)]𝑖∈𝒩 }     (4.4) 

𝑠. 𝑡.  𝐷𝑡 = ∑ 𝑞𝑖
𝑡

𝑖∈𝒩    (4.5) 

 

The problem defined by Eqs. (4.4) and (4.5) is a convex optimization problem and could be 
solved efficiently if the local functions 𝑑𝑖(𝑞𝑖

𝑡) were known or truthfully disclosed by all end 

users. However, 𝑑𝑖(𝑞𝑖
𝑡) of each user is not known and thus, problem (4.4) is typically solved 

via dual decomposition in the demand side management (DSM) literature (see more details 
about state-of-the-art related works in section 5.2 of D3.1). In this approach, the aggregator 
iteratively increases a per-unit reward 𝜆  asking from the end users their consumption 
reduction 𝑞𝑖

𝑡(𝜆) at each per-unit reward 𝜆 (auction query). At each iteration, each end user i 

responds with his/her preferred 𝑞𝑖
𝑡(𝜆). A truthful (locally optimal) response by end user 𝑖, 

denoted as 𝑞𝑖
�̃�(𝜆) , is one that maximizes 𝑖 ’s utility for reward 𝜆 . This is mathematically 

formulated as the solution to maximization problem (4.6): 
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 𝑞𝑖
�̃�(𝜆) = argmax

𝑞𝑖
𝑡∈Q𝑖,𝑖∈𝒩

{𝜆 ∙ 𝑞𝑖
𝑡 − 𝑑𝑖(𝑞𝑖

𝑡)}    (4.6) 

 

Clearly, 𝑞𝑖
�̃�(𝜆) is non-decreasing in 𝜆, since 𝑞𝑖

𝑡 ≥ 0.  The auction terminates when 𝜆 reaches a 

value for which ∑ 𝑞𝑖
𝑡(𝜆)𝑖∈𝒩 = 𝐷𝑡(𝜆). The final price is called the market-clearing price of the 

B2C flexibility market and is denoted by 𝜆𝑚𝑐. The allocation at 𝜆𝑚𝑐 is efficient if the end users 
truthfully report their 𝑞𝑖

𝑡  at each query. However, truthful report may not be the best 
strategy for every end user. To illustrate this, we present the following example. 

 

Consider two end users and a given timeslot t. End User 1 operates a load with power 
consumption 10 kW, while end user 2 operates a 50 kW load. Now suppose they participate 

in a FlexRequest and their discomfort function is 𝑑𝑖(𝑞𝑖
𝑡) = 𝜔𝑖 ∙ (𝑞𝑖

𝑡)2, 𝑖 ∈ {1,2},  where their 
true flexibility parameters are 𝜔1 =  𝜔2 = 0.1. The reward function is 𝑅𝑡(𝛥𝐿𝑡) = 5 · (𝛥𝐿𝑡) . 
Should they act according to their true discomfort function parameters, their utilities (given 
by Eq. (4.1)) at equilibrium would be 𝑈1 = 𝑈2 = 4.875  units. In case end user 2 acts 

untruthfully according to 𝜔2
𝑓𝑎𝑘𝑒

= 0.2 , his/her utility at equilibrium will be 𝑈2 = 7 . 

Therefore, the best strategy for User 2 is to be untruthful. 

 

The previous example demonstrates how the market-clearing approach builds on the 
assumption that end users behave myopically, by truthfully solving (4.6) at each iteration. 
However, a FlexRequest will involve intelligent agents and it will not take long before such 
end users realize that they can benefit from engineering untruthful responses. The problem 
is that if we relax the truthfulness assumption and consider strategic end users, market-
clearing methods no longer result in efficient allocations. Thus, it is very important to design 
a market mechanism (MM) that is not only efficient, but also incentive compatible. 

 

The Vickrey-Clarke-Groves (VCG) mechanism is the unique mechanism that is simultaneously 
DISC (Dominant Strategy Incentive Compatible) and efficient15. The VCG payment rule is the 
so called “Clarke pivot rule”, which calculates a reward 𝑟𝑖 equal to 𝑖’s “externality”. In other 
words, it rewards each end user 𝑖 with an amount equal to the difference that 𝑖’s presence 
makes in the social welfare of other end users. In the direct VCG mechanism, users are asked 
to declare their local functions 𝑑𝑖(𝑞𝑖

𝑡) to the aggregator. Because of the Clarke pivot rule, it 
is a dominant strategy for each end user to make a truthful declaration. Thus, the efficient 
allocation that corresponds to the social welfare maximization problem can be calculated at 
the aggregator’s side. In order to calculate the VCG rewards from Eq. (4.6), problem (4.4) is 
solved |𝒩| + 1 times (one time with each end user in 𝒩 absent to calculate the payments, 
plus one time with all end users present to calculate the allocation). The major drawback of 
the direct VCG mechanism is the requirement that the end users disclose their discomfort 
functions 𝑑𝑖(𝑞𝑖

𝑡) to the aggregator. This raises important issues such as a) Lack of privacy, in 
the case where end users are reluctant to reveal local information, and b) Difficulty of 
implementation, in cases where end users are unable to express their preferences in a closed 
form function.  

 

                                                
15 V. Krishna, "Auction Theory", New York: Academic, 2002. 
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In the next section, we propose a modification of Ausubel’s Clinching auction16, allowing for 
a distributed implementation of VCG, which is designed to tackle these issues.  In particular, 
we opt for an iterative auction that:  

 facilitates end users’ bids via auction queries, thus making the proposed architecture 
more easily implementable in practice 

 engages end users in the B2C flexibility market and allocates consumption reduction 
gradually along the way, so that price discovery is facilitated on the end users’ side 

 protects end user’s privacy via a properly designed communication protocol 

 

4.4.1 Ausubel’s Clinching auction and the proposed Modified Clinching Auction (MCA) 
algorithm  

The Clinching Auction (CA) is a well-known ascending price auction that halts when demand 
equals supply. However, in contrast to most auctions, allocation and rewards are not cleared 
exclusively at the final iteration. Rather, the goods (consumption reduction in our context) 
are progressively allocated as the auction proceeds and payments are also progressively 
built, while the auction design guarantees that the final allocation and payments coincide 
with the ones obtained through VCG. Thus, both allocation efficiency and incentive 
compatibility are achieved, while the aforementioned privacy and implementation 
drawbacks of the direct-VCG mechanism are effectively addressed. 
 
In order for the Clinching Auction to work in our setting, first we need to reverse the price 
trajectory. In the proposed Modified Clinching Auction (MCA), the aggregator begins with a 

per-unit reward 𝜆 = 𝜆𝑚𝑎𝑥  and in each iteration 𝑘 the price 𝜆𝑘  is reduced by a small positive 
number 𝜀. The size of 𝜀 adjusts the discretization level of MCA. By Eq. (3), reward 𝜆𝑚𝑎𝑥 is 
𝑑𝑅𝑡(0)

𝑑𝛥𝐿𝑡 = 𝑎, which, as analyzed earlier, is the highest value possible given that 𝑅𝑡  is concave. 

End users respond by bidding their preferred reduction 𝑞𝑖
�̃�(𝜆) for each 𝜆. We represent the 

end user’s response at 𝜆 as the solution to the end user’s utility maximization problem (which 
is formally defined in Eq. (4.6)).  
 

The end user’s objective function is concave in 𝑞𝑖
𝑡 , since 𝜆 ∙ 𝑞𝑖

𝑡  is linearly increasing and 

𝑑𝑖(𝑞𝑖
𝑡) is convex by Assumption 2. Also, the solution 𝑞𝑖

�̃� is increasing in 𝜆, which means that 

the end user’s response 𝑞𝑖
�̃�  gradually decreases as 𝜆  decreases. For the MCA, we relax 

constraint (4b) to the inequality:  
 

𝐷𝑡 ≥ ∑ 𝑞𝑖
𝑡

𝑖∈𝒩     (4.7) 
 

Consider an arbitrary iteration 𝑘 of the MCA and let 𝐷𝑡(𝜆𝑘) denote the FlexBuyer’s desired 
reduction for per-unit reward 𝜆𝑘 . The central idea of the MCA is the following: if there is a 

set 𝒩𝒿 ⊂ 𝒩 for which we have:  

                                                
16 L. M. Ausubel "An efficient ascending-bid auction for multiple objects”, in American Economic Review, vol 94, 
no.5, pp, 1452–1475, 2004. 
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𝐷𝑡(𝜆𝑘) − ∑ (𝑞𝑗
�̃�(𝜆𝑘))𝑗∈𝒩𝒿 > 0   (4.8) 

 

then we allocate a reduction equal to 𝜁𝑖
𝑘 = 𝐷𝑡(𝜆𝑘) − ∑ (𝑞𝑗

�̃�(𝜆𝑘))𝑗∈𝒩𝒿  to each end user 𝑖 ∉

𝒩𝒿  at a per-unit reward 𝜆𝑘 . We then say that end user 𝑖  “clinched”  𝜁𝑖
𝑘  units. The MCA 

auction terminates when set 𝒩𝒿 that satisfies condition (4.8) and set 𝒩, are equal, that is, 
constraint (4.7) is satisfied. After that, it allocates the remaining 𝐷𝑡(𝜆𝑘−1) proportionally to 
the end users that bid in the second-to-last iteration. 
 
The critical advantage of the Clinching auction is that it allocates different amounts of 
flexibility units at different rewards, and the flexibility units that an end user clinches do not 
depend on his/her own bid, but only on the other end users’ bids. The algorithm that 
implements MCA is presented in the table below. 
 

Table 6: The proposed Modified Clinching Auction (MCA) algorithm 
 

1. Initialize 𝜆0 = 𝜆𝑚𝑎𝑥, 𝑞𝑖
𝑡(𝜆𝑚𝑎𝑥), 𝐷𝑡(𝜆𝑚𝑎𝑥), 𝑘 = 0 

2. while  𝐷𝑡(𝜆𝑘) < ∑ (𝑞𝑖
�̃�(𝜆𝑘))𝑖∈𝒩  

3. if there exists 𝒩𝒿: ∑ (𝑞𝑗
�̃�(𝜆𝑘))𝑗∈𝒩𝒿 < 𝐷𝑡(𝜆𝑘) 

4.             clinch units  𝜁𝑖
𝑘 = 𝐷𝑡(𝜆𝑘) − ∑ (𝑞𝑗

�̃�(𝜆𝑘))𝑗∈𝒩𝒿  for 

all 𝑖 ∉ 𝒩𝒿 at per-unit reward 𝜆𝑘  

5.        else  

6.             set 𝜆𝑘+1 = 𝜆𝑘 − 𝜀 and 𝑘 = 𝑘 + 1 

7.             ask each end user a reduction query for 𝜆𝑘  and                

                 collect the responses 𝑞𝑖
𝑡(𝜆𝑘) 

8.             ask the FlexBuyer for the desired total  

                reduction 𝐷𝑡(𝜆𝑘) at per-unit-reward 𝜆𝑘  

9. End while 

10. Clinch units 

𝜁𝑖
𝑘 = (𝑞𝑖

𝑡(𝜆𝑘−1) − ∑ 𝜁𝑖
𝜉𝑘−1

𝜉=0 ) ∙
𝐷𝑡(𝜆𝑘−1)

∑ 𝑞𝑖
𝑡(𝜆𝑘−1)𝑖∈𝒩

   

 at per-unit reward (𝜆𝑘−1), for each 𝑖 ∈ 𝒩 

 
We are now able to prove the optimality of MCA in terms of social welfare performance: 
 
Theorem 1: The social welfare loss at the final allocation of MCA is within (𝜀2 + 𝜆𝑚𝑎𝑥 ∙ 𝜀)/2𝑏 
of the maximum possible. 
 

Proof:  The value of 𝜆 at which 𝐷𝑡 = ∑ (𝑞𝑖
�̃�)𝑖∈𝒩  is denoted as 𝜆𝑚𝑐, which gives 

𝐷𝑡(𝜆𝑚𝑐) = ∑ (𝑞𝑖
�̃�(𝜆𝑚𝑐))𝑖∈𝒩   (4.9) 

 
Let 𝓀 denote the number of iterations until the auction halts, that is, 

𝓀 = ⌈
𝜆𝑚𝑎𝑥−𝜆𝑚𝑐

𝜀
⌉,  (4.10) 

 
where ⌈∙⌉, denotes the rounding to the nearest larger integer. We have: 
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⌈
𝜆𝑚𝑎𝑥−𝜆𝑚𝑐

𝜀
⌉ ≤ 𝓀 ≤ 1 + ⌈

𝜆𝑚𝑎𝑥−𝜆𝑚𝑐

𝜀
⌉   (4.11) 

 
After the last “clinchings” (cf. line 10 of the algorithm), we have efficiently allocated 

𝐷𝑡(𝜆𝓀−1)  reduction units to the end users. The remaining 𝐷𝑡(𝜆𝑚𝑐) − 𝐷𝑡(𝜆𝓀−1)  are not 

allocated and this causes the loss of welfare  𝑊𝑙𝑜𝑠𝑠 , which is depicted as the grey area in the 

figure below, where the red line represents 𝐷𝑡(𝜆) and the blue line represents ∑ 𝑞𝑖
�̃�(𝜆)𝑖∈𝒩 .  

 

 
Figure 11: 𝑫𝒕(𝝀) and ∑ (𝒒𝒊

�̃�(𝝀𝒌))𝒊∈𝓝  as a function of 𝝀 

 

Since we remain agnostic of the closed form of ∑ (𝑞𝑖
�̃�(𝜆𝑘))𝑖∈𝒩 , we assume the worst case and 

calculate an upper bound on the sum of the grey plus the yellow area of the figure above: 
 

𝑊𝑙𝑜𝑠𝑠 ≤ 𝜆𝑚𝑐 (𝐷𝑡(𝜆𝑚𝑐) − 𝐷𝑡(𝜆𝓀−1)) +
1

2
(𝜆𝓀−1 − 𝜆𝑚𝑐) (𝐷𝑡(𝜆𝑚𝑐) − 𝐷𝑡(𝜆𝓀−1)). 

 

By substituting 𝐷𝑡(𝜆) =
𝑎−𝜆

2𝑏
 from Eq. (3), we get: 

𝑊𝑙𝑜𝑠𝑠 ≤
𝜆𝑚𝑐(𝜆𝓀−1−𝜆𝑚𝑐)

4𝑏
+

𝜆𝓀−1(𝜆𝓀−1−𝜆𝑚𝑐)

4𝑏
≤

(𝜆𝓀−1)
2

−(𝜆𝑚𝑐)2

4𝑏
 . 

 

By further substituting 𝜆𝓀−1 = 𝜆𝑚𝑎𝑥 − 𝜀(𝓀 − 1) and also substituting 𝓀  from inequalities 
(4.11), using the left inequality when 𝓀 appears with a minus sign and the right inequality 
when it appears with a plus sign, we finally obtain: 

𝑊𝑙𝑜𝑠𝑠 ≤
𝜀2+𝜆𝑚𝑎𝑥 ∙𝜀

2𝑏
 , 

completing thus the proof.          
 
Since we cope with a real-time application, the trade-off between the market mechanism’s 
optimality and its computational time is of special importance. The latter directly relates to 
the price-step 𝜀 , which means that Theorem 1 gives a quantification of the trade-off 
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described. Thus, the aggregator can accurately predict and control the mechanism’s response 
time by adjusting 𝜀, (e.g. in order to meet the balancing market’s time granularity), while 
having a worst-case quantification of the efficiency loss. 
 
In practice, for the relevant use cases of price-anticipating end users, the computational 
complexity of the MCA is small, which allows for a very small choice of 𝜀. To emphasize this, 
it is useful to state the following corollary to Theorem 1. 
 
Corollary 1: for 𝜀 ≪ 1, the welfare loss grows linearly with 𝜀. 
 
Because the MCA includes a price-sensitive response also at the operator’s side, we have to 
verify that the properties of efficiency and incentive compatibility still hold. This is proved in 
the following Propositions. 
 
Proposition 1: Truthful bidding is a dominant strategy in MCA. 
 

Proof: Fix an iteration 𝑘 and assume that user 𝑖 bids 𝑞𝑖,𝑓𝑎𝑙𝑠𝑒
𝑡 (𝜆𝑘) ≠ 𝑞𝑖

�̃�(𝜆𝑘) in that iteration. 

From step 4 of MCA, we see that 𝜁𝑖
𝑘 does not depend on 𝑞𝑖

𝑡 but only on the other end users’ 

bids 𝑞𝑗
𝑡, 𝑗 ≠ 𝑖. Thus, end user 𝑖’s bid can affect 𝑖’s allocation only by changing the 𝜆 at which 

the termination condition holds. This means that a false bid 𝑞𝑖,𝑓𝑎𝑙𝑠𝑒
𝑡 (𝜆𝑘)  will make a 

difference to 𝑖, only if 𝑘 is the last iteration. However, by definition of 𝑞𝑖
�̃�(𝜆𝑘) (see Eq. (6)), 

any bid 𝑞𝑖,𝑓𝑎𝑙𝑠𝑒
𝑡 (𝜆𝑘) ≠ 𝑞𝑖

�̃�(𝜆𝑘)  brings strictly lower utility to end user 𝑖 at any iteration 𝑘. 

Thus, truthful bidding brings the highest utility to end user 𝑖.   
 
Furthermore, the following properties of the VCG mechanism hold also for the MCA: 
Proposition 2: MCA is individually rational, weakly budget-balanced, and achieves the 
maximum revenue for the aggregator among all efficient mechanisms. 
 
Proof: The MCA auction is welfare maximizing (by Theorem 1, for 𝜀 small enough) and DSIC 
(by Proposition 1). Moreover, the class of VCG mechanisms is the unique class that 
simultaneously achieves these two properties. Since MCA terminates with the VCG allocation 
and payments, it inherits the property of individual rationality.  
 
Regarding the weak budget balance property, it suffices to show that our setting exhibits the 
no single-agent effect. An environment exhibits no single-agent effect if the aggregated utility 
of 𝑛 − 1 users does not improve by adding a 𝑛th user to the system. This property holds in 
single-sided auctions with monotonous preferences 17 , since dropping an end user only 
reduces the competition for the remaining end users, thus making them better-off. 
 
Moreover, the VCG market mechanism maximizes the auctioneer’s utility, which means that 
the aggregator buys flexibility units from the end users at the lowest possible price (among 
all efficient and individually rational market mechanisms). 
 

                                                
17 Y. Shoham, K. Leyton-Brown, "Multiagent Systems", Cambridge University Press, 2009. 
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4.4.2 Privacy preserving distributed communication protocol 

A major drawback of the direct VCG mechanism is that it requires each end user to know and 
disclose his/her discomfort function to a central entity (i.e. the aggregator). The MCA auction 
algorithm implements the VCG allocation and payments via an indirect market mechanism. 
In this way, end users are only required to respond to a specific sequence of queries, instead 
of being required to communicate their discomfort function. Thus, the mechanism does not 
require this direct-revelation and can also work with each participant solving an optimization 
problem in parallel, while still achieving the VCG outcome (and its nice properties). This 
allows for a privacy-aware implementation of an efficient and truthful B2C flexibility market 
architecture. In this subsection, we demonstrate how exactly the proposed (optimal and 
incentive compatible) mechanism can be configured with a scalable and privacy-preserving 
communication protocol. For this purpose, we exploit this related Kademlia work18, although 
now that the mechanism is disengaged from the direct-revelation and central computation 
of the typical VCG, different communication protocols can also be applied.  
 
The proposed mechanism is implemented through the development of a distributed 
communication protocol that preserves privacy (by doing all the necessary calculations 
required by MCA in a distributed fashion) while simultaneously guaranteeing all MCA 
objectives. 
 
According to 1, the major requirements from distributed systems (with use cases in privacy 
preserving through blockchain) are: i) scalability in terms of number of users that participate 
in them (which according to 1 is directly related to the balanced distribution of the 
load/calculation overhead among participating users) and ii) low delay in terms of the time 
that is needed for the privacy-aware algorithm’s execution (i.e. MCA’s execution). 
 
The proposed B2C flexibility market architecture exploits blockchain services 1, which are 
based on Distributed Hash Tables (DHT) 3 technologies, in order to execute MCA in a 
distributed fashion. In this context, end users do not inform the aggregator about their 
answers to the MCA’s queries. Instead, these answers are sent only to a small subset of end 
users in 𝑁, in order to execute the calculations of MCA in a distributed fashion. 
 
Thus, the proposed architecture acts as a substrate that offers a privacy preserving service to 
MCA through which participating end users cooperate in order to protect their personal data 
(i.e., their discomfort functions 𝑑𝑖(∙)) from the aggregator. In order to achieve this, they use 
a DHT 3, which is based on the scheme proposed by Kademlia 4. In Kademlia, each user (node) 
is identified by a number (nodeID) that can be seen as a point in a specific virtual space. The 
nodeIDs do not serve only as identification, but they are also used by the Kademlia algorithm 
to store and locate/get values/data hashes (i.e., the answers to the FSP queries). This process 
is realized through a peer-to-peer routing service (implemented in the network application 
layer) that Kademlia offers. In order to achieve this, each piece of information is given as 
input to a hash function, whose output belongs to the aforementioned virtual space. Each 
node is responsible for a subset of this virtual space according to its nodeID. Furthermore, 

                                                
18 P. Maymounkov, D. Mazières, "Kademlia: A Peer-to-Peer Information System Based on the XOR Metric" in: 
Druschel P., Kaashoek F., Rowstron A. (eds) Peer-to-Peer Systems. IPTPS 2002. Lecture Notes in Computer 
Science, vol 2429, 2002. 



55 
 

participating nodes create and dynamically maintain routing tables in a bottom-up organized 
way. Thus, they can collectively reach any point of this virtual space, by exploiting their 
routing tables, in order to store and get information from this distributed data base. Through 
the exploitation of these functionalities, the distributed execution of MCA takes place 
through the use of 4 in the three following steps: 
 

1. Data insertion: At each iteration 𝑘 of MCA, each node 𝑖 stores its bid 𝑞𝑖
�̃�(𝜆𝑘) in another 

random node 𝑤 through the use of the aforementioned DHT system. It is highlighted that 𝑤 
is different for each 𝑖  and 𝑘  (as it is derived from the output of the hash function that 
Kademlia uses), and in this way collusion of a relatively small number of users to acquire data, 
will fail (which is a requirement that 5 sets). 
 

2. Calculation of 𝜁𝑖
𝑘(𝜆𝑘): Kademlia organizes the participating nodes in a tree structure. The 

proposed system exploits this structure in order to calculate the sum ∑ 𝑞𝑖
�̃�(𝜆𝑘)𝑖∈𝒩  that MCA 

requires. To do so in a distributed way, node 𝑗 waits until all nodes with lower nodeID from 
it inform 𝑗 on possible data values they have to send to 𝑗. This process continues recursively 
until the node with the highest id acquires the desirable data and then it calculates the sum. 

At this point, this node also requests and receives 𝐷𝑡(𝜆𝑘) from the aggregator and checks 

the termination condition. If it doesn’t hold, j proceeds by broadcasting ∑ 𝑞𝑖
�̃�(𝜆𝑘)𝑖∈𝒩  and 

𝐷𝑡(𝜆𝑘)  to all nodes, using the Kademlia tree. Thus, each node 𝑗  calculates 𝜁𝑖
𝑘(𝜆𝑘)  by 

subtracting the 𝑞𝑖
�̃�(𝜆𝑘) value that is stored in it (which is not its own 𝑞𝑗

�̃�(𝜆𝑘) value, and it 

doesn’t know whose it is). 
 
3. Final allocation and payments calculation: at the next iteration 𝑘 + 1, a different instance 

of Kademlia tree could be created, so that 𝜁𝑖
𝑘+1(𝜆𝑘+1) is stored at a new node 𝑔, other than 

𝑗. Thus, even in the case that a node is malicious, data privacy is not compromised. The tuple 

𝐴𝑖 = { ∑ 𝜁𝑖
𝜉(𝜆𝜉)𝑘

𝜉=1 , ∑ [𝜁𝑖
𝜉(𝜆𝜉) · 𝜆𝜉]𝑘

𝜉=1 }, containing the allocation and payments of user 𝑖 

up until iteration 𝑘 , is passed from user 𝑗  to 𝑔 . At the final iteration, the tuples 𝐴𝑖  are 
communicated to the aggregator. Note that the aggregator receives only the final allocation 

and payments for each end user, i.e., only the sum of 𝜁𝑖
𝑘(𝜆𝑘) and not the intermediate values 

𝜁𝑖
𝜉(𝜆𝜉). This means that the aggregator (and any other node for that matter) does not have 

the data to estimate the entire local discomfort function 𝑑𝑖(∙) of end user 𝑖. 
 
The analysis above assumes that the aggregator is honest-but-curious. By this, we mean that 
the aggregator is curious to know the discomfort functions of end users, but is also honest 
and will never attack the system in order to acquire them. In case of a malicious aggregator 
(i.e. with no hesitations to break the law), more strict privacy assumptions are needed, but 
this case is outside of FLEXGRID’s scope. The interested reader can refer to the recent 
literature of privacy-preserving aggregation for the smart grid 6 7 8 9 10 11. 
 

In this section, we present two detailed appliance models taken from the literature and then 
use simulations to demonstrate the advantages of the MCA and verify its properties. We also 
compare MCA with state-of-the-art approaches. Specifically, we compare it with the marginal 
cost pricing method Error! Reference source not found. in terms of truthfulness and 



56 
 

aggregator’s profits and with the direct-revelation VCG method 12 in terms of scalability. 
Simulations were run in Matlab R2018b. 

 

4.5.1 Detailed electric appliance models 

The first model is taken from Error! Reference source not found. and includes appliances 
that control the temperature of an environment, such as HVAC units. The end user’s most 

preferable temperature is denoted by parameter 𝑇𝑖
𝑝𝑟𝑒𝑓(𝑡) and was taken in our experiments 

to be uniformly distributed in the interval [75F, 79F]. The actual room temperature, denoted 

by 𝑇𝑖
𝑖𝑛(𝑡), evolves according to: 

  

𝑇𝑖
𝑖𝑛(𝑡) = 𝑇𝑖

𝑖𝑛(𝑡 − 1) + 𝜂 ∙ [𝑇𝑜𝑢𝑡(𝑡) − 𝑇𝑖
𝑖𝑛(𝑡 − 1)] +  𝜃 ∙ (𝑝𝑖,𝐻𝑉𝐴𝐶

𝑡 −  𝑞𝑖,𝐻𝑉𝐴𝐶
𝑡 ),  (4.12) 

 

where 𝑝𝑖,𝐻𝑉𝐴𝐶
𝑡  is the end user’s measurable power consumption before the occurrence of a 

FlexRequest and 𝑞𝑖,𝐻𝑉𝐴𝐶
𝑡  is the curtailment resulting from the FlexRequest. Clearly, we have: 

 

𝑝𝑖,𝐻𝑉𝐴𝐶
𝑡 − 𝑞𝑖,𝐻𝑉𝐴𝐶

𝑡 ≥ 0,  (4.13) 

 

and we also have the operational constraint: 

  

𝑝𝑖,𝐻𝑉𝐴𝐶
𝑡 ≤ �̂�𝑖,𝐻𝑉𝐴𝐶

𝑡 .  (4.14) 

 

In the experiments, �̂�𝑖,𝐸𝑉
𝑡  was set to 5 kW. We considered end users living in the same 

geographical location, hence the outdoors temperature 𝑇𝑜𝑢𝑡(𝑡) for the whole day was the 
same for all end users and represented a typical summer day in Athens, Greece. Parameters 
𝜂 and 𝜃 where set to 0.9 and 3, respectively. The user’s discomfort at timeslot 𝑡 for such end 
users (appliances) was defined as the square difference between actual and desired 
temperatures: 

 

𝑑𝑖
𝑡𝑒𝑚𝑝(𝑞𝑖

𝑡) = 𝜔𝑖,𝐻𝑉𝐴𝐶
𝑡𝑒𝑚𝑝

(𝑇𝑖
𝑖𝑛(𝑡) − 𝑇𝑖

𝑝𝑟𝑒𝑓(𝑡))
2

,  (4.15) 

 

where parameter 𝜔𝑖,𝐻𝑉𝐴𝐶
𝑡𝑒𝑚𝑝

 expresses the end user’s inelasticity in timeslot 𝑡  and was 

randomly selected in the range [0.10, 0.50]. 

 

The second appliance model represents temporally flexible loads (e.g., EVs) and is taken from 
14. The EV is plugged-in at timeslot 𝛾𝑖, where 𝛾𝑖  is uniformly selected in the interval [3,9], for 
one third of the end users and in the interval [14, 20] for the remaining two thirds. Each EV 
charges with a charging power 𝑝𝑖,𝐸𝑉

𝑡  and has a total charging demand of 𝐸𝑖,𝐸𝑉  kWhs, where 

𝐸𝑖,𝐸𝑉  was uniformly selected in the interval [6, 36]. The end user wants the EV to be charged 

as soon as possible and any delay would bring discomfort. This model accurately represents 
en-route charging (where an end user stops to charge the EV in a charging station on his/her 
way to his/her destination). The desired charging duration, denoted as 𝛿𝑖, was set to 𝛿𝑖 = 3 
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timeslots for all end users. The upper limit on charging power, denoted by �̂�𝑖,𝐸𝑉
𝑡 , was selected 

as �̂�𝑖,𝐸𝑉
𝑡 =

𝐸𝑖,𝐸𝑉

𝛿𝑖
. That is, if FlexRequests occurred, each end user would charge his/her EV in 3 

(consequent) timeslots. An EV operational constraint is given as: 

 

𝑝𝑖,𝐸𝑉
𝑡 ≤ �̂�𝑖,𝐸𝑉

𝑡 .     (4.16) 

 

The EV cannot be charged before arrival: 
 

𝑝𝑖,𝐸𝑉
𝑡 = 0,    𝑡 < 𝛾𝑖 ,   (4.17) 

 

and must be fully charged before leaving: 
 

∑ 𝑝𝑖,𝐸𝑉
𝑡

𝑡∈𝒯 ≥ 𝐸𝑖,𝐸𝑉 .   (4.18) 

 
During a FlexRequest, an end user may choose to curtail 𝑞𝑖,𝐸𝑉

𝑡  units from EV charging and 

compensate for them by charging the EV in a later timeslot. This delayed charging (for 
timeslots after 𝛾𝑖 + 𝛿𝑖 − 1), comes with a discomfort defined as: 
 

𝑑𝑖,𝐸𝑉
𝑤𝑎𝑖𝑡(𝑞𝑖 𝐸𝑉

𝑡 ) = ∑ [(𝜔𝑖,𝐸𝑉
𝑤𝑎𝑖𝑡)

𝑡−𝛾𝑖−𝛿𝑖+1
∙ 𝑝𝑖,𝐸𝑉

𝑡 ]𝑡∈{𝒯|𝑡≥𝛾𝑖+𝛿𝑖} ,  (4.19) 

 

where parameter 𝜔𝑖,𝐸𝑉
𝑤𝑎𝑖𝑡  expresses the end user’s inelasticity for delayed charging and was 

uniformly selected in the range [1, 1.5]. 

 

4.5.2 Performance evaluation results 

Over a time horizon of 24 timeslots, with a duration of 15 minutes for each timeslot and for 
a setting of 50 end users, we simulated a FlexRequest in timeslot 17 (where there was a peak 
in the aggregated energy consumption). The parameters of the reward function were set to 
𝑎 = 3 and 𝑏 = 0.05. We used step 𝜀 = 10−3 in the MCA algorithm (cf. Table above). The 
figure below (i.e. left hand side) depicts the aggregated consumption along all 24 timeslots. 
As the figure shows, there is a consumption curtailment in the timeslot where the DR-event 
takes place and a consequent shift of consumption to a later timeslot (timeslot 20). Note that 
it could not be shifted to timeslots 18 or 19, because constraints (4.14) and (4.16) were 
already tight for these timeslots. 

 

Next, we investigate the effect that cheating has on the aggregator’s profits, denoted by 

𝛱𝑡𝑟𝑢𝑡ℎ𝑓𝑢𝑙  for the case where end users act truthfully and by 𝛱𝑐ℎ𝑒𝑎𝑡  for the case where they 

act according to what brings them the highest utility. We plot the ratio 𝛱𝑐ℎ𝑒𝑎𝑡/𝛱𝑡𝑟𝑢𝑡ℎ𝑓𝑢𝑙  for 

different values of end users’ elasticities {𝜔𝑖,𝐻𝑉𝐴𝐶
𝑡𝑒𝑚𝑝

, 𝜔𝑖,𝐸𝑉
𝑤𝑎𝑖𝑡}.  

 

To do so, for each experiment, we multiply the end users’ elasticity parameters by a positive 
factor 𝜔𝑓 . Higher values of 𝜔𝑓  indicate more inelastic end users. The right hand side of the 

figure below shows that the ratio 𝛱𝑐ℎ𝑒𝑎𝑡/𝛱𝑡𝑟𝑢𝑡ℎ𝑓𝑢𝑙   is maximized and is equal to 1 for the 
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MCA, verifying our theoretical results. We also observe that for the marginal cost pricing 
method 12, the aggregator’s profit loss due to untruthfulness rises with 𝜔𝑓  (i.e., when end 

users are less elastic), indicating that our scheme’s truthfulness property becomes more 
important in markets where participants are not particularly flexible. 

 

 
Figure 12: (a) Aggregated consumption as a function of time with and without the FlexRequest.  

(b) Ratio 
𝜫𝒄𝒉𝒆𝒂𝒕

𝜫𝒕𝒓𝒖𝒕𝒉𝒇𝒖𝒍 as a function of 𝝎𝒇 

 
Next, we verify Corollary 1. We simulated the FlexRequest for different values of the step 

parameter 𝜀, measuring the proportional welfare loss: 𝑊𝑙𝑜𝑠𝑠 =
𝑊𝑜𝑝𝑡−𝑊𝑀𝐶𝐴

𝑊𝑜𝑝𝑡
, where 𝑊𝑜𝑝𝑡  is 

the optimal welfare and 𝑊𝑀𝐶𝐴 is the welfare achieved by the MCA. The simulation results in 
the figure below verify Corollary 1, which states that for small values of 𝜀, the upper bound 
on the welfare loss grows linearly with 𝜀. 
 

 
Figure 13: Proportional welfare loss of MCA as a function of the price step 𝜺 

 
As a next step, we compare MCA to the direct-revelation VCG method (proposed in 14), in 
terms of scalability with respect to the number of end users. Simulations have been carried 
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out on an Intel Core i7 4GHz, 64-bit, 16GB RAM, computer. As depicted in the figure below, 
the computational time of the method in 14 rises very quickly, which makes it impractical for 
real-time applications. In contrast, MCA scales remarkably well to any number of end users, 
since the algorithm’s convergence time does not depend on the size of set 𝒩. In order to 
confirm the scalability properties of our privacy preserving protocol presented in the 
previous section, we depict in the right hand side of the figure below the latency introduced 
by it. As it is known theoretically, in DHT technologies, this latency increases logarithmically 
with the number of end users. This is verified in the same figure, which testifies their 
outstanding scalability properties. In comparison to the timeslot duration (15 minutes, which 
is a typical granularity for measurements and clearing of the existing balancing markets in 
Europe), these results show that the proposed system is both scalable and efficient. 
 

 
Figure 14: (a) Convergence time of MCA and VCG, as a function of the number of users. (b) Delay 

(latency) of privacy preserving protocol as a function of the number of participating users 

 

Finally, we discuss the property of incentive compatibility. We thus verify the theoretical 
result of Proposition 1 for end user models that satisfy the Assumptions and also 
experimentally study incentive compatibility in the case of inelastic appliances (where our 
Assumptions are not satisfied). Our results are compared against the typical Marginal Cost 
Pricing Method 12. We will now verify the truthfulness property via simulations. For the case 
of elastic end users, we assume that one end user misinterprets his/her discomfort by 

manipulating his/her 𝜔𝑖,𝐸𝑉
𝑤𝑎𝑖𝑡 , while all other end users act truthfully. The untruthful end user 

is indexed by 𝑐ℎ (for cheater). The cheater’s utility 𝑈𝑐ℎ is maximized for a certain choice of 
𝜔𝑐ℎ. The figure below shows 𝑈𝑐ℎ as a function of 𝜔𝑐ℎ. 
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Figure 15: Focal end user's utility as a function of his/her choice of 𝝎𝒄𝒉 

 

The black dotted line represents the focal user’s actual (real) 𝜔𝑖,𝐸𝑉
𝑤𝑎𝑖𝑡 , denoted as 𝜔𝑟𝑒𝑎𝑙 . For 

the MCA, the end user’s optimal choice of 𝜔 (the one where 𝑈𝑐ℎ is maximized) coincides with 
𝜔𝑟𝑒𝑎𝑙, which means that the end user’s best strategy is to act truthfully. A similar statement 
cannot be made for the marginal cost pricing method. 
 
The result of Figure 15 was expected, since it was already proven in Proposition 1. Although 
we cannot state a similarly strong theoretical guarantee for inelastic end users, nevertheless 
our simulations show similar results. We study the case where an appliance is inelastic, in the 
sense that it can only be turned on or off, but its consumption cannot take intermediate 
values: 

𝑝𝑖,𝑖𝑛𝑒𝑙
𝑡 ∈ {0, �̂�𝑖,𝑖𝑛𝑒𝑙

𝑡  },  (4.20) 

and thus, 
𝑞𝑖,𝑖𝑛𝑒𝑙

𝑡 ∈ {0, �̂�𝑖,𝑖𝑛𝑒𝑙
𝑡  }.  (4.21) 

 

The end user’s discomfort for turning his/her load off, is denoted by 𝑑𝑖,𝑖𝑛𝑒𝑙
𝑜𝑓𝑓

. Thus, the end 

user’s discomfort function takes the form: 

𝑑𝑖,𝑖𝑛𝑒𝑙(𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡 ) =  {

0,            𝑓𝑜𝑟 𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡 = 0

𝑑𝑖,𝑖𝑛𝑒𝑙
𝑜𝑓𝑓

,   𝑓𝑜𝑟 𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡 > 0

.   (4.22) 

This kind of appliances violate 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 2. In fact, in mechanism design terms, the form 
of the end user’s valuation for these appliances exhibits complementarity (the end user can 
either curtail all �̂�𝑖,𝑖𝑛𝑒𝑙

𝑡  KWhs, but he/she cannot make use of an allocation that is smaller than 

�̂�𝑖,𝑖𝑛𝑒𝑙
𝑡 ). It has been proven that in the presence of such complementarities that there is no 

tractable iterative auction that can achieve incentive compatibility 15. The clinching auction 
for example, could end up allocating any reduction between 0 and �̂�𝑖,𝑖𝑛𝑒𝑙

𝑡  to the end user. In 

what follows, we present an extension of the MCA algorithm that accommodates inelastic 
end users and evaluate it via simulations. Although we can no longer theoretically guarantee 
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the property of incentive compatibility, nevertheless simulation results show that, in 
practice, truthful bidding is still the best choice for each end user.  
 
Let 𝐼  denote the set of inelastic end users. The first step is to run the MCA algorithm as 

described in Table 6. Then, we grant the MCA allocations 𝜁𝑖
𝑘, ∀𝑘 only to elastic end users 𝑖 ∉

𝐼. The remaining reduction ∑ ∑ 𝜁𝑖
𝑘

𝑖∈𝐼
𝓀
𝑘=1 , will be reallocated amongst the inelastic end users, 

in a way that respects constraints (4.21). This is actually an instance of the knapsack problem. 
In order not to compromise the computational time guarantees of our real-time auction, we 
use a simple heuristic to solve it. Inelastic end users are sorted in increasing order of their so 

called “bang-for-buck” i.e. their 
𝑑𝑖,𝑖𝑛𝑒𝑙

𝑜𝑓𝑓

𝑝𝑖,𝑖𝑛𝑒𝑙
𝑡 . Finally, we allocate 𝑞𝑖,𝑖𝑛𝑒𝑙

𝑡 = �̂�𝑖,𝑖𝑛𝑒𝑙
𝑡  to user 𝑖 ∈ 𝐼, in 

increasing order of the sorted list, until  ∑ 𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡

𝑖∈𝐼 ≥ ∑ ∑ 𝜁𝑖
𝑘

𝑖∈𝐼
𝓀
𝑘=1 . The procedure is 

depicted in Table 7. 
 

Table 7: The Extended MCA algorithm 

1. RUN THE MCA ALGORITHM (Table 6) 

2. SET 𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡 = 0, ∀𝑖 ∈ 𝐼 

3. SORT USERS 𝑖 ∈ 𝐼, in increasing order of 𝑑𝑖,𝑖𝑛𝑒𝑙
𝑜𝑓𝑓

/ �̂�𝑖,𝑖𝑛𝑒𝑙
𝑡  

4. Set 𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡 =  �̂�𝑖,𝑖𝑛𝑒𝑙

𝑡  for user 𝑖 ∈ 𝐼, in increasing order of the sorted list, until  

∑ 𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡

𝑖∈𝐼 ≥ ∑ ∑ 𝜁𝑖
𝑘

𝑖∈𝐼
𝜉
𝑘=1  

 

 

 
Figure 16: Users’ Utility as a function of user’s interpreted valuation 
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In Figure 16, we present indicative results (for various values of �̂�𝑖,𝑖𝑛𝑒𝑙
𝑡  and 𝑑𝑖,𝑖𝑛𝑒𝑙

𝑜𝑓𝑓
), regarding 

the truthfulness of an inelastic end user’s strategy, when participating in the extended MCA. 
More specifically, we tested how well an end user does (in terms of utility 𝑈𝑖, see Eq. 4.1), by 
interpreting his/her discomfort with various (untruthful) values. The end user’s actual 
discomfort for curtailing �̂�𝑖,𝑖𝑛𝑒𝑙

𝑡  units is marked with a vertical dotted line. From the figure, it 

becomes clear that the end user already achieves his/her maximum possible utility, by 
truthfully interpreting his/her discomfort and has nothing to gain by playing untruthfully. This 
is, again, in contrast to the marginal cost pricing approach 12. 
 

Within M19-M26, we will elaborate on the UCS 4.2 work in order to deal in more depth with 
algorithmic complexity and scalability problem. Our research findings indicate the need to 
deal with the scalability problem, which becomes very difficult to solve when we consider 
many FlexRequests published by the FLEXGRID ATP, a large portfolio of end users (i.e. at a 
scale of several hundreds of end users or even millions19), more complex (and thus realistic) 
FlexAsset models and more stringent real-time constraints imposed by the B2C flexibility 
market. 

 

In order to cope with these research challenges, our ongoing work focuses on combining the 
existing work on B2C flexibility market with an optimal cloud resource allocation algorithm. 
The cloud resource allocation algorithm will be able to service multiple FlexRequests (e.g. in 
multiple distribution networks), and minimize the cost of computational resources, while 
respecting the execution time constraints of each FlexRequest. This will motivate towards 
cost-efficient and competitive B2C flexibility market as a service. 

 

Another research task, which is also related with respective WP6 work is to integrate the 
proposed Behavioral Real Time Pricing (B-RTP) scheme into the Automated Flexibility 
Aggregation Toolkit (AFAT) and FLEXGRID ATP. Thus, the aggregator user will be able to 
exhaustively run offline “what-if” simulations to decide about personalized FlexContracts 
that best fit with each end energy prosumer's needs and energy prosumption profile. 

 

 

                                                
19  Note that each end user may have several flexible electric appliances (FlexAssets), so the number of 
participating entities increases even more. 
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5 S/W integration in AFAT and FLEXGRID ATP 

The Automated Flexibility Aggregation Toolkit (AFAT) has been designed in a way that can be 
commercially exploitable as a standalone S/W toolkit, which can be integrated as a S/W 
“plug-in” in other larger S/W platforms developed by an energy aggregator company in the 
future. Within the FLEXGRID’s context, AFAT will be integrated in the FLEXGRID S/W platform 
(ATP) and its operation will be tested via extensive lab experimentations and pilot tests within 
WP6 and WP7. 
 
So far, in FLEXGRID, we have done the following work with respect to the AFAT: 

 We have developed a first version of the AFAT’s functionalities. In other words, we 
have developed and tested the first version of the research algorithms that will be 
running at the AFAT’s backend. The initial research results are extensively analyzed 
and demonstrated in chapters 2-4 of the current document. 

 AFAT’s data modelling work has been finalized and is provided in D6.120 (M18). In 
particular, for each one of the three main algorithms to be integrated in AFAT, we 
have designed the APIs for the interconnection between the: i) AFAT’s backend 
services, ii) AFAT’s frontend services, and iii) central FLEXGRID database. 

 As part of WP8 business modeling work, we have identified the AFAT’s Key Exploitable 
Results (KERs) and have already made a qualitative business analysis regarding the 
ways that the proposed functionalities can be further exploited in the commercial 
aggregator’s business. More details are provided in D8.2 (M18). 

 
From M19 onwards, we will continue the WP3 research and will start integrating the first 
version of the algorithmic solutions in the AFAT. Then, we will extensively test and validate 
our algorithms in FLEXGRID ATP at TRL 5. In the figure below, the progress of AFAT’s 
development is depicted throughout the whole project’s lifetime as follows: 

 Within WP3, we conduct high-quality scientific research work by developing 
advanced mathematical models and algorithms beyond state-of-the-art and publish 
them in high-quality scientific journals and conferences (TRL 3). 

 After the extensive testing and validation of the proposed algorithms at TRL 3, the 
next step is the deployment of REST API servers and REST API client for the 
integration of AFAT’s frontend and backend services. 

 The next step is the testing and validation of the AFAT algorithms via the use of 
FLEXGRID ATP at TRL 5 (WP6).  

 Finally, within WP7 work, we will conduct small-scale real-life pilot tests of AFAT’s 
functionalities in the UCY pilot (TRL 6). 

 

 
Figure 17: Progress of AFAT’s development and respective technology readiness levels (TRLs) 

  

                                                
20 https://flexgrid-project.eu/deliverables.html  

https://flexgrid-project.eu/deliverables.html
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The aggregator user will be able to use a bunch of services from the FLEXGRID ATP. Once 
logged in the ATP via a single sign-in authentication process, the aggregator user will be re-
directed to the AFAT’s frontend services. The Graphical User Intefaces (GUIs) will be based 
on the existing WISECOOP application, which has been developed with H2020 WISEGRID 
project21. The goal of FLEXGRID is to use WISECOOP as a S/W substrate based on which the 
FLEXGRID’s WP3 algorithms will be integrated.  
 
AFAT’s frontend (GUI) will be comprised of three basic tabs, namely: 

 Manage a FlexRequest 

 Create a FlexOffer 

 Manage a B2C flexibility market 
 
By using the “Manage a FlexRequest” tab, the aggregator user will be able to visualize the 
profit of accepting a FlexRequest and the “consequences”/remaining flexibility of its portfolio 
after the positive response. The goal is to deviate from the baseline only by the amount of 
energy in FlexRequests, which were accepted by the aggregator. Two modes of operation will 
be considered as follows: 

 Online operation: A new FlexRequest-Dispatch is published in real-time by a 
FlexBuyer in the ATP. The aggregator is instantly informed and then will run the UCS 
4.1 algorithm (cf. chapter 2) to decide the updated dispatch per FlexAsset / end user 
that belongs to its portfolio. 

 Offline operation: The aggregator performs “what-if” simulation scenarios (i.e. 
different configurations of FlexContracts, expansion/modification of portfolio, 
different sequence of FlexRequests, etc.) to determine strategies for optimal 
response to future FlexRequests.  For a sequence of multiple FlexRequests assumed 
in a given “what-if” simulation scenario configured by the aggregator user, the 
algorithm will run iteratively. 

 
As of the “Create a FlexOffer” tab, the aggregator user will be able to visualize a FlexOffer 
and then submit (post) it in FLEXGRID ATP at a specific time instance regarding its 
participation in the DLFM market. Then, the FMO user will also be able to visualize this 
FlexOffer as well as the DSO (i.e. FlexBuyer). If this FlexOffer is not accepted in DLFM, it may 
be forwarded to the TSO’s balancing market. Two modes of operation will be considered as 
follows: 

 Online operation is when the aggregator user wants to create a FlexOffer in real-time 
(in order to submit it in the ATP) based on the current availability of FlexAssets (cf. 
FlexContract per FlexAsset that denotes the available reserve capacity). 

 Offline operation is when the aggregator user wants to run “what-if” scenarios to see 
whether it is more beneficial to participate in the existing TN-level balancing market 
or DN-level balancing market (i.e. DLFM). 

 
Finally, regarding the “Manage a B2C flexibility market” tab, the aggregator user will be able 
to visualize in AFAT frontend (i.e. ATP) several KPIs that make him/her recommend a new 

                                                
21 See more technical details about WISECOOP application here: https://www.wisegrid.eu/project-tools 

https://www.wisegrid.eu/project-tools
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(more beneficial) FlexContract to a set of end energy prosumers. Only offline operation is 
considered as follows :   

 Offline operation: The aggregator user runs various “what-if” simulation scenarios via 
running an advanced retail pricing algorithm (Behavioral Real Time Pricing – B-RTP) to 
identify how it can recommend a new (more beneficial) FlexContract to a set of end 
energy prosumers. Only the aggregator user will be able to visualize the results. 

 

 

 

 

For each one of the three algorithms, there will 
be a tab in the AFAT frontend. Once the aggregator user clicks on one tab, s/he will be able 
to configure/customize/fill in the input parameters that are needed for each algorithm to be 
able to run. Once the aggregator user clicks on the “Run algorithm” button, step 1 process 
that is shown in the figure below, will be followed. More specifically, the API client that 
resides at the AFAT frontend will automatically gather all input parameters and will send 
them to the API server that resides at the AFAT backend. 
 
After the AFAT backend receives the input parameters, the next step is to request for the 
required input data from the FLEXGRID central database (DB). More specifically, an API client 
that resides at AFAT backend requests for input data from an API server residing at the central 
DB. In step 3, the input data is retrieved, and now the algorithm can be executed.  
 
Once the algorithm produces the results, these output parameters will be automatically 
gathered by the AFAT-ATP API and will be sent to the AFAT frontend so that the aggregator 
user can visualize the results in a comprehensive and user-friendly manner. The final step 
(i.e. step 5) is for the aggregator user to understand the results and if s/he is interested in 
further elaborating them, then s/he can optionally select to store them in the central DB in 
order to be able to retrieve, visualize and possibly compare them with other results in the 
future.      
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Figure 18: Sequence diagram for the S/W integration of WP3 research algorithms in AFAT and 

FLEXGRID ATP 
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6 Conclusions and next steps  

In the following months, WP3 partners will progress the current research work presented in 
this report and will provide the final research results in Month 26.  
 
Regarding UCS 4.1 work, UCY will follow the research plan described in section 2.6. As of UCS 
4.2 and 4.3 work, ICCS will follow the research plan described in sections 4.6 and 3.6 
respectively. 
 
In the figure below, the timeline schedule of WP3 is illustrated. Milestone #5 has been 
achieved with this deliverable, while one more milestone remains to be accomplished for 
month #26 with the submission of D3.3. 
 

 
Figure 19: Current FLEXGRID project’s WP3 timeline schedule (MS 5 has been accomplished) 
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