
0

H2020-GA-863876

Intermediate Version of Distributed
Flexibility Asset Markets and Advanced

Retail Market Mechanisms

Deliverable D3.2

A novel smart grid architecture that

facilitates high RES penetration through

innovative markets towards efficient

interaction between advanced electricity

grid management and intelligent

stakeholders

1

Document Information
Scheduled delivery 31.03.2021
Actual delivery 22.03.2021
Version Final
Responsible Partner ICCS

Dissemination Level
PU Public

Contributors
Prodromos Makris (ICCS), Nikolaos Efthymiopoulos (ICCS), Konstantinos Steriotis (ICCS),
Maria-Iro Baka (UCY), Christina Papadimitriou (UCY), George Georghiou (UCY), Domagoj
Badanjak (UNIZG-FER)

Internal Reviewers
Hrvoje Pandzic (UNIZG-FER), Emmanouel Varvarigos (ICCS)

Copyright
This report is © by ICCS and other members of the FLEXGRID Consortium 2019-2022. Its
duplication is allowed only in the integral form for anyone’s personal use and for the
purposes of research or education.

Acknowledgements
The research leading to these results has received funding from the EC Framework
Programme HORIZON2020/2014-2020 under grant agreement n° 863876.

2

Glossary of Acronyms

Project management terminology

Acronym Definition

D Deliverable

HLUC High Level Use Case

MS Milestone

WP Work Package

UCS Use Case Scenario

Technical terminology

Acronym Definition

AFAT Automated Flexibility Aggregation Toolkit

AI Artificial Intelligence

API Application Programming Interface

ARMM Advanced Retail Market Mechanism

ATP Automated Trading Platform

B2B/B2C Business to Business / Business to Consumer

BIC Bayes-Nash Incentive Compatibility

BRP Balance Responsible Party

CA Clinching Auction

DAM Data Acquisition Module

DER Distributed Energy Resource

DFA Distributed Flexibility Asset

DNN Deep Neural Network

DR Demand Response

DSIC Dominant-Strategy-Incentive-Compatibility

DSM Demand Side Management

DSO/TSO Distribution/Transmission System Operator

ECC Energy Consumption Curve

ESP Energy Service Provider

ESS Energy Storage System

EV Electric Vehicle

FSP Flexibility Service Provider

FST FlexSupplier’s Toolkit

GUI Graphical User Interface

HVAC Heating, Ventilation and Air Conditioning

ICT Information and Communication Technology

KPI Key Performance Indicator

MCA Modified Clinching Auction

MDP Markov Decision Process

ML Machine Learning

MM Market Mechanism

MTU Market Time Unit

3

RES Renewable Energy Sources

RF Random Forest

S/W Software

TCL Thermostatically Controlled Loads

TOU Time of Use

VCG Vickrey-Clarke-Groves

VPP Virtual Power Plant

WEMM Wholesale Electricity Market Module

4

Table of Contents

Table of Contents ... 4
List of Figures and Tables.. 6

1.1 List of Figures ... 6
1.2 List of Tables ... 6

Document History .. 7
Executive Summary .. 8
1 Introduction.. 10

1.3 Description of High-Level Use Case #4 and interaction with the FLEXGRID
system as a whole ... 10
1.2 Summary of state-of-the-art solutions for the aggregator’s business
challenges ... 11
1.3 Summary of research problems and FLEXGRID’s research innovation.............. 12
1.4 Summary of FLEXGRID’s research impact on today and future aggregator’s
business ... 12

2 An aggregator efficiently responds to FlexRequests made by TSO/DSO/BRPs by
optimally orchestrating its aggregated flexibility portfolio of end energy prosumers.......... 15

2.1 Problem statement, related state-of-the-art and FLEXGRID research
contributions... 15
2.2 System model .. 16
2.3 Problem Formulation .. 18
2.3.1 FlexRequest ... 18
2.3.2 FlexContract/End-user compensation ... 20
2.3.3 FlexAssets .. 21
2.3.4 Objective Function of the Aggregator ... 22

2.4 Algorithmic solution .. 22
2.5 Simulation setup and performance evaluation results ... 23
2.5.1 Simulation setup .. 23
2.5.2 Performance evaluation and KPIs ... 23

2.6 Next research steps for M19-M26 period ... 24
3 An aggregator maximizes its revenues by dynamically orchestrating distributed FlexAssets
from its end users to optimally participate in near-real-time energy markets 25

3.1 Problem statement, related state-of-the-art and FLEXGRID research
contributions... 26
3.2 System model .. 27
3.3 Problem Formulation .. 30
3.4 Machine Learning (ML) based algorithmic solution .. 33
3.4.1 Deep Neural Networks (DNNs) .. 34
3.4.2 Random Forests (RF) .. 34

3.5 Simulation setup and performance evaluation results ... 34
3.5.1 Simulation setup and evaluation framework .. 34
3.5.2 Performance evaluation results .. 38

3.6 Next research steps for the M19-M26 period ... 41
4 An aggregator operates an ad-hoc B2C flexibility market with its end energy prosumers
by employing advanced pricing models and auction-based mechanisms 42

4.1 Problem statement, related state-of-the-art and FLEXGRID research
contributions... 43

5

4.2 System model .. 45
4.2.1 End user’s energy consumption model and utility function 46
4.2.2 FlexRequest and the aggregator’s problem .. 47

4.3 Problem Formulation .. 48
4.4 Proposed algorithmic solution ... 50
4.4.1 Ausubel’s Clinching auction and the proposed Modified Clinching Auction
(MCA) algorithm ... 50
4.4.2 Privacy preserving distributed communication protocol 54

4.5 Simulation setup and performance evaluation results ... 55
4.5.1 Detailed electric appliance models ... 56
4.5.2 Performance evaluation results ... 57

4.6 Next research steps for the M19-M26 period ... 62
5 S/W integration in AFAT and FLEXGRID ATP ... 63

5.1 Summary of AFAT’s functionalities and S/W development 63
5.2 AFAT’s frontend services .. 64
5.3 AFAT’s backend services and integration in FLEXGRID ATP................................... 65

6 Conclusions and next steps .. 67
References ... 68

6

List of Figures and Tables

Figure 1: Diagram of potential sequence of types of FlexRequests 17
Figure 2: Placement of UCS 4.1 mathematical model and algorithm in the existing regulatory
framework ... 18
Figure 3: Placement of UCS 4.3 mathematical model and algorithm in the existing regulatory
framework ... 28
Figure 4: A typical form of an aggregator’s FlexOffer for the upward balancing energy product
 ... 29
Figure 5: Main steps for the realization of FLEXGRID UCS 4.3 in the existing regulatory
framework ... 31
Figure 6: Aggregator’s profit as a function of the imbalance price 39
Figure 7: Estimated probability of imbalance for different values of the tolerance level tol𝑛
 ... 39
Figure 8: Average aggregator’s offers/bids for different levels of FlexAsset flexibility 40
Figure 9: Aggregator’s offers/bids for each timeslot ... 40
Figure 10: System model for FLEXGRID UCS 4.2 .. 46
Figure 11: 𝐷𝑡𝜆 and 𝑖 ∈ 𝒩𝑞𝑖𝑡(𝜆𝑘) as a function of 𝜆 ... 52
Figure 12: (a) Aggregated consumption as a function of time with and without the
FlexRequest. ... 58
Figure 13: Proportional welfare loss of MCA as a function of the price step 𝜺..................... 58
Figure 14: (a) Convergence time of MCA and VCG, as a function of the number of users. (b)
Delay (latency) of privacy preserving protocol as a function of the number of participating
users .. 59
Figure 15: Focal end user's utility as a function of his/her choice of 𝜔𝑐ℎ 60
Figure 16: Users’ Utility as a function of user’s interpreted valuation 61
Figure 17: Progress of AFAT’s development and respective technology readiness levels (TRLs)
 ... 63
Figure 18: Sequence diagram for the S/W integration of WP3 research algorithms in AFAT
and FLEXGRID ATP .. 66
Figure 19: Current FLEXGRID project’s WP3 timeline schedule (MS 5 has been accomplished)
 ... 67

Table 1: Document History Summary ... 7
Table 2: Summary of interactions between WP3 research work (scientific excellence at TRL
3) and WP6/WP8 work about potential business impact .. 13
Table 3: Fields, parameters and information contained within FlexRequests 18
Table 4: Summary of values/distributions of simulation setup’s parameters 36
Table 5: Accuracy of ML Algorithms .. 38
Table 6: The proposed Modified Clinching Auction (MCA) algorithm 51
Table 7: The Extended MCA algorithm .. 61

7

Document History

This deliverable includes the first version of the mathematical models, research problem
formulations, algorithms and performance evaluation results for the operation of the
FLEXGRID’s flexibility aggregation markets.

Table 1: Document History Summary

Revision Date File version Summary of Changes

30/11/2020 v0.1 Draft ToC circulated within all consortium partners

07/01/2021 v0.2 All partners commented on the draft ToC structure.

08/01/2021 v0.3 Final ToC version has been agreed and writing task delegations
have been provided to ICCS and UCY.

03/02/2021 v0.4 ICCS wrote chapters 3 and 4 and contributed its part in chapter
5.

26/02/2021 v0.6 UCY wrote chapter 2 and contributed its part in chapter 5.

08/03/2021 v0.8 ICCS integrated all contributions and pre-final D3.2 version has
been sent to UNIZG-FER for internal review.

15/03/2021 v0.9 UNIZG-FER made a thorough review and requested for changes
to enhance the quality of the deliverable.

20/03/2021 v0.95 ICCS and UCY addressed all comments from the internal review
process and forwarded the final version to the coordinator.

22/03/2021 Final Coordinator (ICCS) made final enhancements/changes and
submitted to ECAS portal

8

Executive Summary

This report is an official deliverable of H2020-GA-863876 FLEXGRID project dealing with the
detailed architecture design of all WP3 subsystems and their interactions as well as the
respective technical specifications emphasizing on the detailed description of WP3 research
problems. The focus of this document is FLEXGRID High Level Use Case #4 (HLUC_04), which
deals with the operation of automated flexibility aggregation as a service to independent
aggregators. Three Use Case Scenarios (UCSs) are presented for the optimization of the
business portfolio of the aggregator, which consists of end energy users/prosumers and their
flexibility assets. The respective algorithms will be implemented in a S/W toolkit called
Automated Flexibility Aggregation Toolkit (AFAT), which will dynamically interact with the
core FLEXGRID Automated Trading Platform (ATP).

Chapter 1 brings an introduction to this report summarizing the scope and purpose of the
document. More specifically, it provides a high-level description and summary of: i) the
aggregator’s business interests and how are these inter-related with the residual FLEXGRID
business ecosystem, ii) state-of-the-art solutions for the aggregator’s business challenges, iii)
proposed research problems’ statements, which are based on (i) and (ii), and what are the
FLEXGRID’s innovations, and iv) FLEXGRID’s potential research impact on future aggregator’s
business.

Chapters 2-4 follow a similar structure in order to present the WP3 research results in a
coherent manner. In particular, for each one of the three respective research problems, we
present:

 Problem statement, related state-of-the-art and summary of FLEXGRID research
contributions

 Proposed system model under study

 Problem formulation including all mathematical modeling

 Proposed algorithmic solution

 Simulation setup and performance evaluation results

 Next steps on how to elaborate on the ongoing WP3 research work until M26.

Chapter 2 presents the research problem of the FLEXGRID UCS 4.1 entitled “Aggregator
manages a FlexRequest”. Here, we assume that a flexibility market has been cleared and the
aggregator needs to optimally schedule its portfolio. The aggregator’s objective is to
maximize its profits from participation in the flexibility market. This translates to
maximization of its revenues and minimization of the associated costs. The revenues of the
aggregator increase with positive responses to FlexRequests. The associated costs can be
divided into two categories. The first are end-user compensations for provision of flexibility,
defined in FlexContracts. The second involves potential imbalance costs, meaning the
financial effect of activating flexibility and deviating from the baseline (already scheduled
energy profile of the flexibility assets due to their participation in the day-ahead energy
market).

Chapter 3 presents the research problem of the FLEXGRID UCS 4.3 that can be summarized
as “Aggregator creates a FlexOffer in an automated and dynamic way”. Here, a novel bidding

9

algorithm is proposed in order for the aggregator to be able to participate in near-real-time
balancing/flexibility markets. In more detail, we propose a generic method for capturing the
aggregator's upward and downward flexibility cost for a set of distributed FlexAssets (or else
DERs) that have non-convex models and inter-temporal couplings. The method is model-free
in the sense that it is not tailored to any specific DER model. Rather, it can be applied to any
type of FlexAssets, regardless of the specific model that each type of FlexAsset has. For this
purpose, we use a fitting function and machine-learning (ML) methods to evaluate the
performance of the proposed FLEXGRID intelligence.

Chapter 4 presents the research problem of the FLEXGRID UCS 4.2 entitled “Aggregator
operates an ad-hoc B2C flexibility market with its end energy prosumers”. In this novel B2C
flexibility market, we assume that the end users compete with each other to provide
flexibility services to the aggregator. The details of each end user’s utility function are stated
via the FlexContract that is agreed with the aggregator. In particular, we draw on concepts of
mechanism design theory in order to define an iterative, auction-based mechanism,
consisting of an allocation rule and a payment rule. The allocation rule refers to the way that
the aggregator decides upon how much net consumption reduction/increase will be
allocated to each end user (i.e. energy prosumer) according to the feedback obtained
through the auction process. The payment rule refers to the way that the aggregator decides
upon the reward of each user for his/her allocation, provided that the end user makes the
corresponding contribution. Through the auction procedure, the aggregator exchanges
messages with the end users in the form of queries. A query in our case is a price signal
communicated from the aggregator to the end user, to which the end user responds with
his/her preferred action (e.g. consumption reduction) according to this signal.

Chapter 5 presents how all the above-mentioned research novelties that have been tested
and validated at TRL 3, will be integrated in the Automated Flexibility Aggregation Toolkit
(AFAT), which is part of the FLEXGRID Automated Trading Platform (ATP) at TRL 5. In
particular, the AFAT’s frontend and backend services are described as well as the interaction
between the WP3 research work and WP6 S/W implementation and integration work.

Conclusively, in Chapter 6, we summarize the next steps for WP3 research work. We also
describe how the WP3 research results will be elaborated in other Work Packages until the
end of the project’s lifetime.

10

1 Introduction

The purpose of High Level Use Case (HLUC) #4 is the operation of automated flexibility
aggregation for optimal use of available distributed flexibility and maximization of profits for
all participants in the portfolio (i.e. all Distributed FlexAssets and the aggregator entity itself).
FlexContracts are agreed between end users and the aggregator, where users’ preferences,
constraints and compensation schemes are stated. Different approaches, leading to different
mathematical models and algorithms are used for the optimal use of distributed flexibility
assets (DFAs) and are shown via the development of different Use Case Scenarios (UCSs) as
documented in previous D2.1 and D2.2 (in Month 4 and 6 respectively).

HLUC #4 focuses on the interaction between flexibility aggregators 1 and end energy
prosumers2. Flexibility aggregators are considered as actors, which combine flexibility from
energy prosumers and/or consumers and participate in markets as flexibility providers. The
aggregated flexibility is sold to different stakeholders like DSOs, TSOs and BRPs, which
participate in the flexibility markets as flexibility buyers (i.e. demand side of the flexibility
market).

In previous D3.13, three research problems (one per UCS of HLUC #4) have been clearly
defined. A high-level description of the three problems has taken place together with related
works from the international literature. FLEXGRID’s research contributions have been clearly
defined and hints about the problem formulation, algorithmic solution, datasets to be used
for the system-level simulations and most important key performance indicators have been
presented.

This deliverable elaborates on the results of D3.1 by presenting the final version of
mathematical modeling and proposed algorithms, while initial performance evaluation
results are presented, too. Our next goal for M19-M26 period is to perform more simulations
considering more realistic case studies and using real-life datasets by following the FLEXGRID
data management plan.

1 By the term “flexibility aggregator”, we mean the market actor who aggregates distributed flexibility from
numerous small-scale end energy prosumers. The main difference with the Energy Service Provider (ESP) actor
(cf. FLEXGRID D4.1 w.r.t. to WP4 research work) that we use in FLEXGRID is that the ESP is a company that also
owns several types of FlexAssets and thus does not only have a portfolio of end energy prosumers like the
aggregator.
2 With the term “end energy prosumer”, we mean the end user who participates in a B2C flexibility market or
has agreed on a FlexContract acting thus a customer of a flexibility aggregator company.
3 https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf

https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf

11

In the previous D3.1, we have made an extensive survey work on the following state-of-the-
art solutions, which are related with the flexibility aggregator’s business challenges today as
follows:

1) Survey on type of incentives for flexibility provisioning
2) Survey on novel market mechanisms for Demand Side Management (DSM)

applications
3) Survey on intelligent S/W agent solutions and equipment for end energy prosumers
4) Survey on existing local flexibility markets in the EU area, where aggregators can trade

their flexibility via a S/W platform

Regarding the first point above, there are several types of incentive-based and price-based
energy or flexibility programs/contracts that exist in the real aggregators’ business. More
specifically, there are classical programs, in which consumers receive a fixed participation
payment. There are also market-based programs, in which participants are rewarded based
on their performance (e.g. amount of reduced electricity during critical conditions). The
incentive-based flexibility contracts can also be categorized as: i) Direct Load Control, ii)
Interruptible/Curtailable Load, iii) Emergency DSM Programs, iv) Capacity Market Programs,
etc. On the other hand, there are considerably less price-based programs in the aggregator’s
business today. This is mainly due to the fact that advanced ICT infrastructure needs to be
installed in each end prosumer’s premises, which is a quite risky business plan. However, the
idea of price-based flexibility programs/contracts has received much research attention from
the international academic community, while many of these scientific solutions are being
pilot tested in EU area during the last years.

Following up the idea of modeling price-based energy/flexibility contracts, the challenge is
to model the objectives of both intelligent, foresighted end users and the aggregator in the
wholesale market. In other words, it remains an open challenge to integrate intelligent
algorithms for distributed FlexAssets’ (DFAs) decisions with dynamic market mechanisms
that are designed to serve the aggregators and ultimately the underlying physical electric
grid. The afore-mentioned novel market mechanisms imply the existence of an ad-hoc B2C
flexibility market, in which the aggregator has a dynamic interaction with all its end energy
prosumers. The end energy prosumers are assumed to compete with each other in this new
market in order for the aggregator to procure the cheapest possible flexibility, which will then
be used to serve the power system’s flexibility needs.

Finally, we have surveyed all existing real-life and conceptual local flexibility markets, which
are being pilot-tested in the EU area during the last years. We have also compared them in
terms of: i) the remuneration mechanism that they adopt for the flexibility aggregators (i.e.
dispatch only or availability only or dispatch and availability payments), ii) the pricing rule
that these markets adopt (i.e. pay-as-bid or pay-as-clear), iii) the flexibility products that are
traded (i.e standardized vs. non-standardized flexibility products), and iv) the stakeholder
that operates the local flexibility market (e.g. independent local market operator entity, DSO,
platform co-designed by TSO and DSO, independent aggregator entity). For more details
about the above-mentioned survey work, interested readers can refer to previous D3.1 (i.e.
chapter 2 as well as section 3.2, 4.2 and 5.2 of D3.1).

12

Following up the survey work mentioned above from both academic and industrial
perspectives, we have come up with three main related FLEXGRID research problems,
namely:

1) The aggregator wants to efficiently respond to a (set of) given FlexRequests made by
a FlexBuyer (TSO/DSO, BRP) by optimally deciding the dispatch per FlexAsset/end
energy prosumer (cf. UCS 4.1)

2) The aggregator wants to maximize its revenues by dynamically orchestrating its
distributed FlexAssets from its end users to optimally participate in near-real-time
energy/flexibility markets (cf. UCS 4.3)

3) The aggregator wants to operate an ad-hoc B2C flexibility market with its end energy
prosumers by employing advanced pricing models and auction-based mechanisms (cf.
UCS 4.2)

Each one of the three research problems are described in detail in chapters 2-4 below. For
each one of the three research problems, we present:

 Problem statement, related state-of-the-art and summary of FLEXGRID research
contributions

 Proposed system model under study

 Problem formulation including the entire mathematical modeling

 Proposed algorithmic solution

 Simulation setup and performance evaluation results at TRL 3, which demonstrate
and prove the concept of FLEXGRID’s research innovations.

 Next steps on how to elaborate on the ongoing WP3 research work until M26 in order
to test and validate the proposed mathematical models and algorithms with more
realistic case studies and the use of real-life datasets.

In WP3, we focus on the scientific excellence of the proposed FLEXGRID services at TRL 3. The
next goal is to adapt the most important WP3 scientific results in order be able to serve the
business needs of an aggregator. Thus, in WP6, our focus is on FLEXGRID’s research impact
on today and future aggregator’s business by demonstrating WP3 intelligence in the
FLEXGRID ATP (i.e. TRL 5).

More specifically, AFAT’s frontend (GUI)4 will be comprised of three basic tabs, namely:

 Manage a FlexRequest

 Create a FlexOffer

 Manage a B2C flexibility market

4 AFAT’s frontend services (GUI) will be developed by ETRA within WP6 context.

13

Table 2 below clarifies how the WP3 research results (TRL 3) will be further exploited in WPs
6 and 8.

Table 2: Summary of interactions between WP3 research work (scientific excellence at TRL 3) and

WP6/WP8 work about potential business impact

AFAT GUI (WP6) Mode of
operation

Business goal (WP8)

Manage a
FlexRequest

Online A new FlexRequest is published in real-time by a FlexBuyer in
the ATP. The aggregator is instantly informed and then runs the
UCS 4.1 algorithm to decide the updated dispatch per
FlexAsset/end user that belongs to its portfolio.

Offline The aggregator performs “what-if” simulation scenarios (i.e.
different configurations of FlexContracts,
expansion/modification of portfolio, different sequence of
FlexRequests, etc.) to determine strategies for optimal
response to future FlexRequests. For a sequence of multiple
FlexRequests assumed in a given “what-if” simulation
scenario configured by the aggregator user, the UCS 4.1
algorithm will run iteratively.

Create a FlexOffer Online The aggregator creates a FlexOffer in real-time (in order to
submit it in the ATP) based on the current availability of
FlexAssets (cf. FlexContract per FlexAsset that denotes the
available reserve capacity).

Offline The aggregator runs “what-if” scenarios to see whether it is
more beneficial to participate in the existing TN-level balancing
market or DN-level balancing market (i.e. DLFM).

Manage a B2C
flexibility market

Offline The aggregator runs various “what-if” simulation scenarios via
running an advanced retail pricing algorithm (Behavioral Real
Time Pricing – B-RTP) to identify how it can recommend a new
(more beneficial) FlexContract to a set of end energy
prosumers.

14

Within FLEXGRID project’s context, we follow the NODES market paradigm and platform
setup. Regarding technical and S/W development issues, we rely on NODES real-life
business experience, while NPC supports with its consultancy services regarding the
integration of the proposed flexibility marketplace in the existing EU markets and
regulations. We assume an online flexibility marketplace (i.e. FLEXGRID ATP), in which the
aggregator acts as a flexibility provider (i.e. FlexSupply side). We also consider that the
aggregator is an independent market entity and has a portfolio of end energy prosumers.
Each end energy prosumer has agreed a FlexContract with the aggregator that defines the
terms under which the flexibility will be procured and remunerated. The aggregator
registers all distributed FlexAssets in the marketplace, so that all other market stakeholders
can see and verify them. The aggregator can use a set of intelligent mathematical models
and algorithms to automate and dynamically adapt the flexibility aggregation process. This
is exactly where FLEXGRID intelligence comes into the foreplay. The aggregator user will
use the frontend and backend services of FLEXGRID’s Automated Flexibility Aggregation
Toolkit (AFAT). In the AFAT frontend, the aggregator user will be able to configure several
input parameters and exhaustively run simulation scenarios in an online and offline mode
as well as visualize the results via a user-friendly GUI. In the AFAT backend, all FLEXGRID
WP3 algorithms will run. Part of this FLEXGRID intelligence (at TRL 5) will be open source,
so that today and future aggregator’s business can easily reuse it and potentially extend it.

15

2 An aggregator efficiently responds to
FlexRequests made by TSO/DSO/BRPs by
optimally orchestrating its aggregated
flexibility portfolio of end energy prosumers

The focus of this chapter is the research problem of FLEXGRID’s HLUC_04_UCS_01. In this
specific Use Case Scenario (UCS), the aggregator needs to represent the flexibility of its
portfolio of DERs (i.e. FlexAssets) in the market and manage the aggregated flexibility in a
centralized manner.

Flexibility needs in the future are expected to increase and the benefits of developing local
flexibility markets are the focus of the ongoing research. The potential of DER flexibility and
their interaction in the current market design is limited, which is expected to change with the
emerging role of the independent aggregator. A more detailed and extensive survey work
on DERs, their flexibility and representation in the market can be found in chapter 2 and
section 3.2 of previous FLEXGRID D3.15.

In this research problem, the aggregator needs to efficiently respond to a FlexRequest. This
requires dispatch of FlexAssets within its portfolio of flexible DERs to activate the requested
amount of energy. Response to a FlexRequest and dispatch of FlexAssets is decided in an
online fashion and the aggregator needs the appropriate digital tools (supported by advanced
mathematical models and algorithms) in order to minimize the risks and maximize its profits.
The complexity of this problem stems from the uncertainty of future flexibility activation
needs, the different operation patterns and behaviors of FlexAssets and the multiple types
of FlexContracts.

In FLEXGRID, apart from maximizing the aggregator’s profit, three main requirements are
considered when responding and managing a FlexRequest that is generated by the market:

 Ensure profit for all end-users. The aggregator needs to have a strong and versatile
portfolio to be able to fulfill FlexRequests. As the aggregator’s portfolio consists of
DERs of end-users, who agree to provide their flexibility, the aggregator user needs
to ensure that all participating end users are properly incentivized and have
tangible and well-quantified profits.

 The aggregator respects reservations of flexibility. Flexibility is needed for the
system’s secure and reliable operation. All reservations of the aggregator’s
flexibility need to be guaranteed and available when needed.

 Deviations of scheduled operation. Flexibility is defined as the ability to modify the
operation pattern upon a request. This causes deviations to the already scheduled

5 https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf

https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf

16

operation pattern (e.g. day-ahead energy market dispatch schedule). These
deviations should occur only for Market Time Units (MTUs), where flexibility was
requested from the market. Any other deviation would have undesired effects to
BRPs and suppliers of the same FlexAssets.

Flexibility as an individual product is currently not traded in any of the European electricity
markets. Flexibility, as a property of an electrical supply or demand source, in current
electricity markets, can be used by existing market players to better position themselves in
the Day-Ahead market and qualify their assets for provision of ancillary services. Flexible
assets are of a particular interest and in the current market design can participate in the part
of the ancillary services market relating to balancing needs (frequency regulation) 6, the
regulation market.

The regulation market in the existing regulatory framework can be divided in two stages: the
DA reserve market and the balancing market (near real-time). In the DA reserve market,
participants with successful/accepted bids commit to their ability to deliver the agreed
quantity of energy for a specific Market Time Unit (MTU) and are in principle compensated
for the reserved capacity (or else availability). In a second stage, at near real-time, the actual
needs of the system become known and participants can bid for providing balancing energy.
In most European markets, accepted bids of reserved capacity are obliged to offer balancing
energy in the near-time balancing market. This however does not exclude the participation
of other market players.

In the current electricity market design, the regulation market is under the supervision of the
TSO, who is the sole buyer of reserve capacity and balancing energy at the transmission
network level. The independent aggregator aims to represent flexibility of DERs in the
market, which in turn will expand the potential of “flexibility” markets by attracting more
flexibility buyers. Flexibility from DERs can be used to provide technical needs concerning
system operation for both TSOs and DSOs, better balancing opportunities for trading (cf. BRP
services) and requirements for non-dispatchable generation (cf. RES Producers) to
participate in energy markets.

In the UCS examined in this chapter, the two stages of the regulation market are incorporated
under the umbrella term of “FlexRequests”. The independent aggregator is considered to be
a price-taker market player, who interacts with the market by receiving FlexRequests-
Reserve in the DA reserve market, and FlexRequests-Dispatch in the near real-time balancing
market. Potentially, both types of FlexRequests can originate from multiple flexibility buyers,
namely TSO, DSO and BRPs. The sequence of FlexRequests is shown in the figure below.

6 ENTSOe, “Survey on Ancillary Services Procurement and Electricity Balancing Market Design”, 2019, [Online].

https://www.entsoe.eu/publications/market-reports/#2019-surveys-on-ancillary-services-and-cross-border-
balancing-initiatives

https://www.entsoe.eu/publications/market-reports/#2019-surveys-on-ancillary-services-and-cross-border-balancing-initiatives
https://www.entsoe.eu/publications/market-reports/#2019-surveys-on-ancillary-services-and-cross-border-balancing-initiatives

17

Figure 1: Diagram of potential sequence of types of FlexRequests

In case the aggregator accepts a FlexRequest of the reserve type (i.e. FlexRequest-Reserve),
the reserved capacity needs to be available for the specific flexibility buyer for the required
MTU. The aggregator is obliged to accept a FlexRequest-Dispatch from the same flexibility
buyer for the specified MTU, up to the amount of capacity/energy of the FlexRequest-
Reserve. In case of a FlexRequest-Dispatch with no prior reservation, the aggregator can
either give a positive or negative response.

The scheduled operation (consumption/generation) of FlexAssets within the aggregator’s
portfolio, in accordance with the timeline and sequence of current trading floors for energy,
is determined in the Day Ahead energy market (Supplier/Independent Aggregator). In other
words, this means that we assume an already defined dispatch schedule generated after the
market clearing process of the day-ahead energy market that should be (by all means)
respected by all market participants.

A positive response to a FlexRequest-Dispatch requires the aggregator to activate a subset of
FlexAssets of its portfolio to reach the requested amount of energy for the MTU. Depending
on the cost function and with respect to the constraints of the FlexAssets and end-users, the
aggregator issues for each FlexRequest-Dispatch the dispatch decision per FlexAsset for the
relevant MTU.

As shown in the figure below, the clearing of the day-ahead reserve market precedes the
near-real-time balancing market. The aggregator represents its portfolio of FlexAssets in both
markets. Prior to any FlexRequest, which requires activation/dispatch of FlexAssets (Flex
Request – Activation), the aggregator knows its obligations from the reserve market and from
any other bilateral agreements (FlexRequest – Reserve).

FlexRequest-Reserve

FlexRequest-Dispatch

18

Figure 2: Placement of UCS 4.1 mathematical model and algorithm in the existing regulatory

framework

The objective function, from the aggregator’s point of view, is to maximize the profit from its
participation in the flexibility market. This translates to the maximization of the revenues
from the flexibility market (FlexibilityRevenues), while minimizing the associated costs
(FlexibilityCosts).

The main parameters of the optimization problem required to calculate FlexibilityRevenues
and FlexibilityCosts from the aggregator’s perspective are:

 FlexRequests, which represent interaction with the market.

 FlexContracts, which represent interaction with end-users.

 FlexAssets that belong to the aggregator’s portfolio.

2.3.1 FlexRequest

As stated in section 2.2, a FlexRequest can be one of two types: reserve or dispatch. The
fields, parameters and information contained within FlexRequests are shown in the following
table.

Table 3: Fields, parameters and information contained within FlexRequests

Type of Request Reserve Dispatch

FlexBuyer X X

Grid Location A A

Quantity type Capacity (Power) Energy

Quantity Amount of kW Amount of kWh

Regulation Up/Down/Symmetrical Up/Down

19

Reservation Price Price per kW -

Dispatch Price Min price per kWh Price per kWh

Acceptance Type Full/Partial Full/Partial

Timestamp y ∈ [0,95] y ∈ [0,95]

Market Time Unit (MTU) x ∈ [0,95] x ∈ [0,95]

Activation notice Min time for dispatch request -

Accepted FlexRequests of the reserve type, which represent interaction of the aggregator
with the current DA reserve market, require availability of the requested capacity for the
requested MTU. The aggregator must ensure that all control actions over its FlexAssets
respect this constraint. The activation notice of the FlexRequest-Reserve provides also
information of the latest timestamp, where the dispatch of reserved capacity can occur.

A FlexRequest of the reserve type offers reservation payments to the aggregator for the
requested amount of available capacity/power. A FlexRequest-Reserve is assumed to contain
information regarding the minimum price for activation per kWh, for a following
FlexRequest-dispatch, which is necessary for the aggregator to decide to accept or not the
reservation request.

The aggregator’s revenue associated with reservation of FlexAssets for all MTUs within the
time horizon 𝑇 is:

∑ ∑ 𝐶𝑖,𝑡
𝐹𝑅𝑟 ∙

𝑖∈𝐹𝑅𝑟𝑡∈𝑇

𝑃𝑟𝑖,𝑡
𝐹𝑅𝑟 ∙ 𝑥𝑖,𝑡

𝐹𝑅𝑟 (2.1)

where 𝐹𝑅𝑟 is the set of all FlexRequests-Reserve, 𝐶𝑖,𝑡
𝐹𝑅𝑟 and 𝑃𝑟𝑖,𝑡

𝐹𝑅𝑟 are respectively the

requested capacity (kW) and price per kW of a FlexRequest-Reserve 𝑖 ∈ 𝐹𝑅𝑟 for MTU 𝑡.
Parameter 𝑥𝑖,𝑡

𝐹𝑅𝑟 denotes the acceptance type of the FlexRequest 𝑖 and is equal to 1, if the

FlexRequest is fully accepted.

A FlexRequest of the dispatch type can either follow a FlexRequest-Reserve, requesting
activation of reserved assets, or come without a prior reservation. In the first case, the
aggregator is required to fulfil the request, while in the second case, the response of the
aggregator can be either positive or negative (cf. Figure 1 above). In any case, the aggregator’s
revenue associated with requests for dispatch of flexibility depends only on the activated
flexible energy and does not include reservation payments:

∑ ∑ 𝐸𝑗,𝑡
𝐹𝑅𝑑 ∙ 𝑃𝑑𝑗,𝑡

𝐹𝑅𝑑 ∙

𝑗∈𝐹𝑅𝑑𝑡∈𝑇

𝑥𝑗,𝑡
𝐹𝑅𝑑 (2.2)

where 𝐹𝑅𝑑 is the set of all FlexRequests-Dispatch, 𝐸𝑗,𝑡
𝐹𝑅𝑑 and 𝑃𝑑𝑗,𝑡

𝐹𝑅𝑑 are respectively the

requested energy (kWh) and price per kWh of a FlexRequest-Dispatch 𝑗 ∈ 𝐹𝑅𝑑 for MTU 𝑡.

Parameter 𝑥𝑗,𝑡
𝐹𝑅𝑑 denotes the acceptance type of the FlexRequest 𝑗 and is equal to 1 if the

FlexRequest is fully accepted.

Reserved capacity and activated energy for a MTU are related through:

20

𝐸𝑖,𝑡
𝐹𝑅𝑑 = 𝐶𝑑𝑖,𝑡

𝐹𝑅𝑟 ∙ 𝜏 (2.3)

where 𝜏 is the duration of a single MTU.

2.3.2 FlexContract/End-user compensation

End-user compensation, or else the aggregator’s cost of acquiring flexibility, is defined in the
FlexContracts of the aggregator with the end-users that belong to its portfolio. The
compensation of the end-user can be separated into three categories:
Reservation/Participation, Dispatch and Activation.

The reservation/participation component provides the incentive to the end-user to
participate in the aggregator’s portfolio. This ensures a decrease of the end-user’s electricity
bill, even in the case where none of his flexibility assets are dispatched/used. The
participation payment depends on the amount of flexibility that the end-user provides to the
aggregator. In any case, concerning the time horizon of the optimization problem, this is a
fixed cost for the aggregator.

The dispatch component is related to the dispatched flexibility/energy and it is energy-
dependent. In contrast, the activation component is related to the number of times that a
FlexAsset is activated and depends on the number of activations. For a given FlexAsset, the
compensation involving its use can either be energy dependent or dependent on the number
of activations. Energy dependent compensation for the FlexAssets of end-users 𝑁 over the
time horizon 𝑇 is computed based on the following mathematical formula:

∑ ∑ ∑ 𝐸𝑘,𝑡,𝑛
𝐹𝐴 ∙ 𝑃𝑟𝑘,𝑡,𝑛

𝐹𝐴

𝑘𝜖𝐹𝐴𝑛𝜖𝑁𝑡𝜖𝑇

 (2.4)

Here, 𝐸𝑘,𝑡,𝑛

𝐹𝐴 is the activated flexible energy of FlexAsset 𝑘 𝜖 𝐹𝐴 and 𝑃𝑟𝑘,𝑡,𝑛
𝐹𝐴 is the price per

kWh for MTU 𝑡.

The activation component of compensation, which depends on number of activations is:

∑ ∑ ∑ 𝑃𝑟𝑘,𝑡,𝑛
𝐹𝐴 (𝑙) ∙ 𝑥𝑘,𝑡,𝑛

𝐹𝐴 (2.5)

𝑘𝜖𝐹𝐴𝑛𝜖𝑁𝑡𝜖𝑇

In this case, 𝑃𝑟𝑘,𝑡,𝑛

𝐹𝐴 (𝑙) is the price for the 𝑙th activation and 𝑥𝑘,𝑡,𝑛
𝐹𝐴 is 0 or 1 depending on the

status of activation of FlexAsset 𝑘𝜖𝐹𝐴 during MTU 𝑡.

Activation and dispatch payments of end-user compensations are one of the aggregator’s
costs, which depend on the dispatch decision of the aggregator. The objective of the
aggregator is through the optimal management of its portfolio to minimize these payments,
thus its cost. The participation fee ensures that end-users are properly incentivized to provide
their flexibility. Activation and dispatch payments described in FlexContracts provide
sufficient compensation for end-users and do not depend on the value of flexibility in the
market. The risk of participating in flexibility market (cf. possible imbalances) is undertaken
by the aggregator. The compensation of end-user 𝑛 𝜖 𝑁 for participation in the flexibility
market is:

21

𝑃𝐹(𝑛) + ∑ ∑ 𝐸𝑘,𝑡,𝑛
𝐹𝐴 ∙ 𝑃𝑟𝑘,𝑡,𝑛

𝐹𝐴

𝑘𝜖𝐹𝐴𝑡𝜖𝑇

+ 𝑃𝑟𝑘,𝑡,𝑛
𝐹𝐴 (𝑙) ∙ 𝑥𝑘,𝑡,𝑛

𝐹𝐴 (2.6)

A constraint of the independent aggregator’s optimization problem is that all participating
end-users should benefit from the provision of their FlexAssets. The baseline cost of
electricity of an end user is:

∑ 𝐸𝑏(𝑡) ∙ 𝑟𝑝(𝑡)

𝑡𝜖𝑇

 (2.7)

where 𝐸𝑏(𝑡) and 𝑟𝑝(𝑡) denote the energy of the baseline consumption and the retail price
of electricity at MTU 𝑡. Participation in the flexibility market leads to deviations between
scheduled/baseline operation (𝐸𝑏) and actual operation (𝐸𝑎). Thus, the aggregator’s
constraint concerning an end-user is:

∑ 𝐸𝑎(𝑡) ∙ 𝑟𝑝(𝑡)

𝑡𝜖𝑇

− {𝑃𝐹(𝑛) + ∑ ∑ 𝐸𝑘,𝑡,𝑛
𝐹𝐴 ∙ 𝑃𝑟𝑘,𝑡,𝑛

𝐹𝐴

𝑘𝜖𝐹𝐴𝑡𝜖𝑇

+ 𝑃𝑟𝑘,𝑡,𝑛
𝐹𝐴 (𝑙) ∙ 𝑥𝑘,𝑡,𝑛

𝐹𝐴 } ≤ ∑ 𝐸𝑏(𝑡) ∙ 𝑟𝑝(𝑡) (2.8)

𝑡𝜖𝑇

and should stand for all end-users 𝑛 𝜖 𝑁.

2.3.3 FlexAssets

Apart from the end-user compensation, FlexContracts contain information regarding end-
users’ preferences and constraints, FlexAssets and their flexibility behavior. This information
is necessary for the aggregator to extract the available flexibility and cost for each FlexAsset
and construct tables for relevant MTUs.

Moreover, it is assumed that the scheduled operation of each individual FlexAsset is known
and the appropriate ICT infrastructure is available to allow monitoring and direct control of
all FlexAssets.

Flexibility assets can either be supply, demand or storage assets. All types of FlexAssets,
depending on the scheduled operation pattern (cf. DA energy market), can be used in
principle for either direction of a FlexRequest (i.e. up or down regulation).

A more interesting classification of assets is based on the type of control over their operation
pattern. A fully flexible asset is labeled as “adjustable” and its basic property is the ability to
activate the potential flexibility, defined by both technical characteristics and user
constraints and preferences, based only on current operation for any given timeslot (MTU),
without any dependency on past operation and without affecting operation at future time
slots. This type of FlexAssets can be associated with either dispatch or activation payments.

Assets with shiftable operation patterns belong to another type, called “shiftable”. The
control of assets in this category allows shifting the operation pattern to a past or future
timeslot with respect to the scheduled operation pattern. The total energy consumed/
generated by this type of assets is defined and the operation pattern always includes
consecutive MTUs. When the operation pattern of assets can be shifted in time, but can also

22

be interrupted, the asset is “shiftable-interruptible”. The total amount of energy is the same,
but the operation can be divided along the time horizon under consideration.

The operation pattern of both shiftable and shiftable-interruptible FlexAssets is considered
to involve more than one MTUs, thus shifting their operation affects multiple MTUs and
causes deviations from the baseline schedule, which were not necessarily requested. These
deviations may incur extra cost, depending on the market structure. In the case, where all
deviations due to shifts can be submitted to the market and establish a new scheduled
operation pattern/baseline, there are no extra costs. It is possible however, that for MTUs in
the near future, there is no possibility for the aggregator to submit a new schedule and
imbalance costs for those MTUs need to be considered.

The aggregator has two alternatives to deal with imbalance costs. The first one involves the
management of the operation of FlexAssets within its portfolio to absorb undesired
deviations and reach the baseline of the DA energy market for MTUs, where flexibility was
not requested, and rescheduling is not an option. The second one is the acceptance of
imbalance costs imposed by the market.

2.3.4 Objective Function of the Aggregator

The objective function of the aggregator is to maximize the profit from participating in the
flexibility market by responding to multiple FlexRequests within a given time horizon 𝑇. The
objective function to be maximized, including only variable components, can be formulated
as follows:

∑ ∑ 𝐸𝑗,𝑡
𝐹𝑅𝑑 ∙ 𝑃𝑑𝑗,𝑡

𝐹𝑅𝑑 ∙

𝑗∈𝐹𝑅𝑑𝑡∈𝑇

𝑥𝑗,𝑡
𝐹𝑅𝑑 − ∑ ∑ 𝑐𝑘,𝑡

𝐹𝐴(𝑒𝑘,𝑡)

𝑘∈𝐹𝐴𝑡∈𝑇

− ∑ 𝐼𝐶

𝑡∈𝑇

(𝑆𝑂(𝑡) + 𝐸(𝑡) − 𝐴𝑂(𝑡)) (2.9)

where the first term represents revenues from FlexRequests-Dispatch, the second one the
cost for activating flexibility within the portfolio and the third one imbalance costs imposed
by the market. Technical characteristics, user preferences and constraints, FlexContracts and

the baseline consumption of FlexAssets determine the cost 𝑐𝑘,𝑡
𝐹𝐴(𝑒𝑘,𝑡) of acquiring flexible

energy 𝑒 from FlexAsset 𝑘 ∈ 𝐹𝐴 at MTU 𝑡. The imbalance cost 𝐼𝐶 is the market price for
undesired deviations of scheduled energy, which per MTU 𝑡 are equal to scheduled operation
(𝑆𝑂(𝑡)) plus requested and accepted flexibility (𝐸(𝑡)) minus actual/measured operation
(𝐴𝑂(𝑡)).

The aggregator’s objective function is a multi-level optimization problem with constraints,
where the aggregator needs to optimally schedule its assets for each MTU in order to
maximize the profit over the entire time horizon. The output of this evaluation scenario is
the set of activated FlexAssets for each MTU.

All the requests for dispatch of flexibility within the time horizon are not known in advance,
thus at run-time, during online operation of the process “Manage a FlexRequest” that is
available in the Automated Flexibility Aggregation Toolkit (AFAT), the aggregator has limited

23

information of future requests. This limited information prohibits exhaustive search over the
entire time horizon, which is only possible for offline operation and “what-if” simulation
scenarios. More details about the S/W integration of UCS 4.1 algorithm inside AFAT and the
respective AFAT’s frontend and backend services are provided in chapter 5 of this report.

Upon a request for dispatch of energy at 𝑡0 for MTU 𝑡, the proposed approach is for the
aggregator to select for dispatch the lower cost FlexAssets in order to reach the necessary
amount of energy (greedy scheduling technique). Feasibility of a potential set of FlexAssets
would require respect over the constraints (reserve availability). The cost assigned to each
FlexAsset takes into account activation cost for the MTU under consideration, modification
of scheduled operation and effects on availability in future time slots. The weight of the
component involving availability in future timeslots depends on the probability of having a
FlexRequest on each MTU. These probabilities are determined based on scenarios of
FlexRequests. As the portfolio of the aggregator can be quite extended, classification of
FlexAssets by using clustering techniques can be applied to improve performance and
scalability.

2.5.1 Simulation setup

The basic inputs of this UCS are FlexRequests, FlexContracts and FlexAssets. As flexibility
markets do not exist in the current regulatory market design, FlexRequests of the reserve
type will be based on the existing DA reserve market. Volumes and prices of FlexRequests of
dispatch type will be based on data of existing balancing energy markets.

Operation patterns of FlexAssets will be taken from load monitoring of different DERs. Cost
aspects involving activation of flexibility will be derived from real-life explicit DR
programs/business cases and relevant research work. Imbalance costs of the market will be
based both on prices of intraday markets and balancing markets.

The length of the time horizon of the optimization problem is a 24-hour day, (00:00-23:59),
which coincides with the output of the existing DA energy market and input datasets will be
used for several days to observe the efficiency of the algorithm and to determine the optimal
parameters for cost and selection functions.

2.5.2 Performance evaluation and KPIs

The principal goal of this research problem is the maximization of the aggregator’s profit for
offering flexibility in the electricity market. In order to evaluate the performance of the
proposed algorithm, the following KPIs will be measured:

 Reliability of the aggregator towards flexibility reservations and activations. The
aggregator must be consistent and reliable towards its actions in the market.
Incompetence to activate energy that has been requested will lead to penalties and
extra costs.

 Utilization of flexibility of portfolio. The aggregator needs to utilize, either through
reservations or activations, the flexibility of its portfolio in an optimal way. If large

24

amounts of flexibility remain unused for multiple time horizons, the cost of sustaining
the portfolio is not justifiable and profitable.

 Undesired deviations from scheduled operation. The aggregator should prioritize
absorbing deviations with actions within its portfolio. Imbalances in the market
indicate the need to expand the portfolio of FlexAssets.

During the period M19-M26 of the FLEXGRID project, the focus of this research problem will
be on creating realistic datasets and test performance of the proposed approach for several
types of flexibility portfolios and cost functions.

A version of the UCS 4.1 algorithm will be integrated in the Automated Flexibility Aggregation
Toolkit (AFAT) and FLEXGRID ATP, which will be done in close collaboration with the work
performed in WP6. The aggregator user will be able to visualize its portfolio and the use of
the proposed algorithm will allow the issue of an optimized dispatch of FlexAssets. Two types
of operation will be possible, namely online and offline. During online operation, the
aggregator will make decision concerning its FlexAssets when receiving a FlexRequest. For
offline operation, the aggregator will be able to run different “what-if” simulation scenarios
to test its ability to manage more FlexRequests by altering accepted reservation of flexibility
and by expanding its portfolio in the future.

25

3 An aggregator maximizes its revenues by
dynamically orchestrating distributed
FlexAssets from its end users to optimally
participate in near-real-time energy markets

This chapter deals with the research problem of FLEXGRID’s UCS 4.3. In this UCS, we consider
the problem of an aggregator that wants to offer aggregated flexibility in a near-real-time
energy market on behalf of a vast number of distributed and small-scale FlexAssets. In today’s
EU electricity markets, this near-real-time market is the so called “balancing energy” market,
which is operated by the TSO. However, within FLEXGRID project’s scope, we also consider
near-real-time distribution level flexibility market (DLFM) in which balancing energy product
is traded between the DSO and aggregators that offer distributed local flexibility to the DSO.
Thus, the DSO is able to deal with local congestions and imbalances that may come up in
near-real-time contexts.

Following up the research work of UCS 4.1 that was presented in the previous chapter, we
now focus on another aggregator’s challenging task, which is the design of the aggregator’s
FlexOffer strategy in a near-real-time context. More specifically, it is difficult for the
aggregator to capture the flexibility cost of a portfolio of FlexAssets within a price-quantity
offer, since the costs and constraints of FlexAssets exhibit inter-temporal dependencies.

In FLEXGRID UCS 4.3 research work, we propose a generic method for constructing
aggregated FlexOffers that best represent the aggregator portfolio’s actual flexibility
costs, while accounting for uncertainty in future timeslots. For the case study presented,
we use offline simulations to train and compare different machine learning algorithms that
receive the information about the state of the FlexAssets and calculate the aggregator’s
FlexOffer. Once trained, the machine learning algorithms can make fast decisions about
the portfolio’s FlexOffer in the near-real-time balancing market. The performance
evaluation results show that the proposed method performs reliably towards minimizing
the aggregator’s imbalances.

In FLEXGRID ATP, the aggregator user will be able to utilize the Automated Flexibility
Aggregation Toolkit (AFAT) to make efficient FlexOffer in near-real-time balancing markets
and DLFMs. In the online operation mode, the aggregator can automatically create a
FlexOffer in real-time (in order to submit it in the ATP) based on the current availability of
FlexAssets (cf. FlexContract per FlexAsset that denotes the available reserve capacity). In
the offline operation mode, the aggregator runs “what-if” scenarios to see whether it is
more beneficial to participate in the existing TN-level balancing market or DN-level
balancing market (i.e. DLFM). If the FlexOffer is not accepted in DLFM, it can be
automatically forwarded to the TSO’s balancing market.

26

Within the previous deliverable D3.17, we have conducted an extensive survey work on the
related state-of-the-art research that has taken place during the last years in this research
field. The interested reader may search for more details in the respective section of D3.1 and
the references therein.

Summarizing this international literature review, studies typically assume some type of
electricity price forecast, and a price-taking aggregator entity that only bids an energy
quantity (much like a supplier does) instead of price-quantity pairs. Creating price-quantity
pairs, is a challenging task for the aggregator, since the costs and constraints of its DERs have
inter-temporal couplings, i.e., the flexibility cost of a DER in the current timeslot is dependent
on how the DER flexibility will be controlled in future timeslots. Moreover, the aggregator's
bid must be decided in an online (i.e. near-real-time) fashion, which means that the available
time for computations is very limited (e.g. 15 minutes, 5 minutes or even less in the future).
The problem gets even more complex, if we want to take into consideration all the various
and diversified FlexAsset models like electric vehicles, heat pumps, different types of storage
units, shiftable loads, etc.

In FLEXGRID, we take into consideration four main requirements towards designing an
aggregator’s FlexOffer as follows (cf. also 16):

 Req #1: The aggregator’s FlexOffer should be concise. Given the scale of
aggregators and the complexity of the constraints of FlexAssets, it is impossible to
communicate precise information about every FlexAsset. Instead, aggregate
flexibility feedback must be a concise summary of a system’s constraints. Even if it
was possible, providing exact information about the constraints of each FlexAsset
governed by the aggregator would not be desirable because the FlexAsset
constraints are typically private. Information conveyed to the system operator
must limit the leakage about specific FlexAsset constraints8.

 Req #2: The aggregator’s FlexOffer should be informative. The feedback sent by
an aggregator needs to be informative enough that it allows the system operator
to achieve operational objectives, e.g., minimize cost, and, most importantly,
guarantee the feasibility of the whole system with respect to the private FlexAsset
constraints.

 Req#3: The aggregator’s FlexOffer should be general enough. Any design for an
aggregator’s FlexOffer must be general enough to be applicable for a wide variety
of controllable loads, e.g., electric vehicles (EVs), heating, ventilation, and air
conditioning (HVAC) systems, energy storage units, thermostatically controlled
loads, residential loads, heat pumps, etc. It is impractical to imagine a different
FlexOffer for each FlexAsset, so the same design must work for all types of
distributed FlexAssets.

7 https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf
8 In this document, we focus our mathematical modeling on the TSO’s balancing market. A similar approach
may be followed for an aggregator’s FlexOffer in the novel distribution-level flexibility markets (DLFMs)
proposed by FLEXGRID. In this case, the aggregator may provide near-real-time balancing energy services to the
local DSO.

https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf

27

 Req #4: The aggregator’s FlexOffer should be real-time. The system is time-varying
and non-stationary. So it is crucial that (nearly) real-time feedback can be defined
and approximated if it is to be used in online FlexOffers made by the aggregator.

Summarizing FLEXGRID’s scientific contributions, we propose a generic method for capturing
the aggregator's upward and downward flexibility cost for a set of distributed FlexAssets (or
else DERs) that have non-convex models and inter-temporal couplings. The method is model-
free in the sense that it is not tailored to any specific DER model. Rather, it can be applied to
any type of FlexAssets, regardless of the specific model that each type of FlexAsset has. We
use a fitting function for this purpose. In order to address the uncertainties of the FlexAssets'
parameters, we perform offline scenario-based simulations, and use these simulations to
train a machine-learning (ML) algorithm. Different ML methods are tested and compared. In
online operation, the trained ML can be provided with the current state of the FlexAssets,
and predict the optimal aggregator’s FlexOffer (prices for given levels of balancing energy)
for the next timeslot ahead very quickly and, as our simulation results indicate (cf. section
3.5 below), with very good accuracy.

There is a general consensus that participation of distributed FlexAssets (also called “DERs”)
should be realized via aggregators, i.e., entities that participate in electricity markets and
undertake balance responsibility on behalf of a portfolio of multiple DERs/FlexAssets. A
FlexAsset/DER is assumed to be registered with an aggregator9, where the latter installs the
necessary communication infrastructure that allows it to monitor, forecast and control the
electricity profile of the FlexAsset. Each FlexAsset has a certain set of preferences towards its
electricity profile, as well as a cost function that maps a FlexAsset’s electricity profile to a
monetary cost. For example, an Electric Vehicle (EV) has an arrival time and a certain energy
that it needs to receive (charge) before its departure. If the aggregator requests the EV to
receive less energy than required, then the EV requests a compensation for this flexibility
service.

Market participants (buyers and sellers) can trade energy in the day-ahead and/or intra-day
markets. This free trade stops at a certain time before real time (delivery time) in order for
the system operator to ensure that the system will be balanced in real time operation. The
time in which trading stops is called gate closure time. After the gate closure, each participant
reports a certain energy profile (energy bought/sold) to the system operator. This profile is
referred to as the participant’s market program.

In real-time operation, the transmission system operator (TSO) is responsible for maintaining
the balance between supply and demand. Given a market program for each market
participant (cf. day-ahead dispatch – DAD results in the figure below), the TSO receives the
players’ offers for providing or requesting balancing energy. A cost optimization problem is
run at the TSO’s side, through which the balancing energy dispatch of each player is
determined.

9 In FLEXGRID ATP, there is an API via which the aggregator can register all its contracted FlexAssets/DERs in the
platform, so that the latter can participate in the various B2B and B2C electricity markets.

28

In order for the TSO to be able to solve this optimization problem in a fast and scalable way,
the balancing energy offers (i.e. FlexOffers) made by the participants need to be provided in
a certain bidding format, which guarantees that the optimization problem is tractable. This
FlexOffer process is depicted in the red outlined area in the figure below. For example, a
participant is typically required to make an offer for upward balancing energy and downward
balancing energy for the timeslot ahead. A typical FlexOffer is a mapping that relates a level
of balancing energy provision to a certain monetary cost. These FlexOffers are typically
required to be in a step-wise form, i.e., pairs of price-quantity.

Figure 3: Placement of UCS 4.3 mathematical model and algorithm in the existing regulatory

framework10

We consider an aggregator entity that is responsible for submitting offers for balancing
energy on behalf of its portfolio. Let 𝑁 denote the set of FlexAssets registered with the
aggregator and 𝑇 denote a set of timeslots within a particular time horizon. The electricity

demand of 𝑁 in 𝑇 is comprised by a vector P𝑁 = {P𝑁
1, P𝑁

2, . . . P𝑁
|𝑇|

} , where an element P𝑁
𝑡

represents the portfolio’s market program (i.e. the energy bought in the day-ahead energy
market represented by the term “DAD results” in the figure above) for timeslot 𝑡. In other
words, we assume that the aggregator should respect a day-ahead energy schedule, which is
the result of the day-ahead energy market clearing process. We assume that this day-ahead
energy schedule should be respected by the aggregator.

Some FlexAssets can offer certain flexibility with respect to their electricity demand. In
particular, the electricity consumption of a flexible DER 𝑛 in timeslot 𝑡 can be controlled. We

10 A similar approach for the creation of the aggregator’s FlexOffer is followed for the proposed near-real-time
DLFMs that are proposed within FLEXGRID. More details about the respective sequence diagrams and
regulatory assumptions are provided in chapter 2 of D6.1 (M18) - https://flexgrid-project.eu/deliverables.html

https://flexgrid-project.eu/deliverables.html

29

denote this control variable as 𝑥𝑛
𝑡 and the respective vector 𝐱𝑛 = {𝑥𝑛

1 , 𝑥𝑛
2, . . . , 𝑥𝑛

|𝑇|
} denotes

the controllable consumption profile of a flexible DER across the time horizon. A certain
consumption profile 𝐱𝑛 , generally comes with a cost for FlexAsset 𝑛. More specifically, a
FlexAsset’s cost is defined as a function 𝑐𝑛(𝐱𝑛) . Moreover, FlexAsset 𝑛 bears a set of
constraints regarding its profile, which for the moment are abstractly denoted as:

𝐱𝑛 ∈ 𝐹𝑛 . (3.1)

Here, a major observation that have to be carefully considered is that constraints (3.1) may

couple a variable 𝑥𝑛
𝑡1 with a variable 𝑥𝑛

𝑡2, i.e., a FlexAsset’s model may exhibit inter-temporal
couplings. The aggregated flexible consumption in timeslot 𝑡 is denoted as 𝑋𝑁

𝑡 , where
𝑋𝑁

𝑡 = ∑ 𝑥𝑛
𝑡

𝑛∈𝑁 (3.2)

and the respective vector 𝐗𝑁 denotes the aggregator’s flexible consumption profile across
the time horizon. The difference P𝑁

𝑡 − 𝑋𝑁
𝑡 is the aggregator’s provided balancing energy in

timeslot 𝑡. Note that it can also take on negative values when the aggregator “absorbs” more
energy than P𝑁

𝑡 .

The aggregator has to provide a FlexOffer in the timeslot 𝜏 ahead (i.e. a cost for energy
injection and an offer for energy absorption). The bidding format is subject to the rules of the
TSO. Typically, it has to be in a form of a step-wise function that defines pairs of balancing
energy quantity and price as it is shown in the figure below in order to make the economic
dispatch problem solvable by standard mixed-integer programming techniques. The above
bidding format, although conducive for the TSO, is quite restrictive for the aggregator, since
it cannot fully capture the aggregator’s actual model, which is comprised by the cost
functions 𝑐𝑛(𝐱𝑛) and constraints 𝐱𝑛 ∈ 𝐹𝑛 of all FlexAssets in the aggregator’s portfolio. Note
also, that the FlexAssets’ cost functions and constraints may exhibit inter-temporal
dependencies, too.

Figure 4: A typical form of an aggregator’s FlexOffer for the upward balancing energy product11

11 A similar FlexOffer curve is also created by the aggregator for the downward balancing energy product.

30

In order to facilitate the method presentation, and without loss of generality with respect to
the methods that will be presented, we assume that the aggregator offers one price-quantity
pair, i.e., a per-unit price 𝑏𝑢𝑝

𝜏 paired with a maximum quantity Bup
𝜏 for upward balancing

energy (i.e. injecting power by curtailing electricity consumption) and bids a per-unit price
𝑏𝑑𝑜𝑤𝑛

𝜏 and a maximum quantity Bdown
𝜏 for downward balancing energy in the next timeslot

𝜏 (i.e. buying more energy than P𝑁
𝜏). The method can be directly extended to as many pairs

as desirable, since our proposed method is generic as it will be clarified shortly.

The mathematical form of the Aggregator’s FlexOffer reads as:

𝑞𝜏(𝑋𝑁
𝜏) = {

𝑏𝑢𝑝
𝜏 (P𝑁

𝜏 − 𝑋𝑁
𝜏) , P𝑁

𝜏 − 𝑋𝑁
𝜏 ≥ 0 (3.3𝑎)

𝑏𝑑𝑜𝑤𝑛
𝜏 (𝑋𝑁

𝜏 − P𝑁
𝜏) , P𝑁

𝜏 − 𝑋𝑁
𝜏 < 0

P𝑁
𝜏 − 𝑋𝑁

𝜏 ≤ Bup
𝜏 , P𝑁

𝜏 − 𝑋𝑁
𝜏 ≥ 0 (3.3𝑏)

𝑋𝑁
𝜏 − P𝑁

𝜏 ≤ Bdown
𝜏 , P𝑁

𝜏 − 𝑋𝑁
𝜏 < 0. (3.3𝑐)

where 𝑞𝜏(𝑋𝑁
𝜏) is the Aggregator’s cost function (for upward and downward balancing

energy) and (3.3b) and (3.3c) communicate to the TSO that the aggregator can receive a
dispatch up to Bup

𝜏 (Bdown
𝜏) for balancing energy up (down).

The TSO gathers all the bids for balancing energy, including the bid (3.3a)-(3.3c) of the
aggregator and the set of bids ℬ𝜏 of other market participants, and clears the balancing
market close to real-time12 by solving an economic dispatch problem that minimizes the
system’s cost 𝑆𝐶 . The output of the economic dispatch problem is the balancing energy
dispatch decisions for each market participant and the balancing energy prices 𝜆up

𝜏 , 𝜆down
𝜏

for upward and downward balancing energy respectively. Note that the system either
dispatches upward or downward balancing energy, so only one of the two prices is non-zero.
We denote the balancing energy dispatch of the aggregator as 𝐷𝜏 . Economic dispatch
problem of the TSO reads as:

min {𝑆𝐶} (3.4)

𝑠. 𝑡. (3.3𝑎) − (3.3𝑐), ℬ𝜏

Thus, the aggregator’s dispatch order 𝐷𝜏 depends on its FlexOffer 𝑏𝑢𝑝
𝜏 , 𝑏𝑑𝑜𝑤𝑛

𝜏 through

problem (3.4).

Upon receiving the dispatch order and the price, the aggregator calculates the power of each
FlexAsset so as to maximize its profit 𝜋. The procedure is illustrated in the figure below. The
aggregator receives a revenue 𝜆up

𝜏 ⋅ max{0, (P𝑁
𝜏 − 𝑋𝑁

𝜏)} from providing balancing energy up

(or a cost 𝜆down
𝜏 ⋅ max{0, (𝑋𝑁

𝜏 − P𝑁
𝜏)} for down), while in case the aggregator deviates from

the TSO’s dispatch order, it receives a penalty 𝜆Imb ⋅ |𝑋𝑁
𝜏 − 𝐷𝜏|. Finally, the aggregator pays

a cost ∑ 𝑐𝑛
𝜏

𝑛∈𝑁 (𝑥𝑛
𝜏) to its FlexAssets in order to shape their profile to {x𝑛}𝑛∈𝑁 such that

12 In EU’s nordic countries, this timeframe is usually 1 hour, but it is expected to be 15 minutes within the next
couple of years. The ambition is to be as closest to real time as possible in the future, so the proposed
mathematical model and machine-learning based algorithmic solution is expected to have an even greater
impact in the future.

31

equation (3.2) holds. Based on the above, the aggregator’s profit in current timeslot 𝜏, can
be expressed as:

𝜋𝜏 = 𝜆up
𝜏 ⋅ max{0, (P𝑁

𝜏 − 𝑋𝑁
𝜏)} − 𝜆down

𝜏 ⋅ max{0, (𝑋𝑁
𝜏 − P𝑁

𝜏)}

−𝜆Imb ⋅ |𝑋𝑁
𝜏 − 𝐷𝜏| − ∑ 𝑐𝑛

𝜏

𝑛∈𝑁

(𝑥𝑛
𝜏) (3.5)

Figure 5: Main steps for the realization of FLEXGRID UCS 4.3 in the existing regulatory framework

The aggregator deals with a sequential decision-making problem where, in the first stage of
current timeslot 𝜏, it decides upon its FlexOffer 𝑏{𝑢𝑝,𝑑𝑜𝑤𝑛}

𝜏 , and in the second stage (after

receiving its dispatch order), it decides upon the electricity consumption of its DERs {𝑥𝑛
𝜏 }𝑛∈𝑁

and consequently 𝑋𝑁
𝜏 . The decisions are realized and the procedure repeats in the next

timeslot. In the first stage decision, the aggregator’s objective is to find the optimal FlexOffer
𝑏{𝑢𝑝,𝑑𝑜𝑤𝑛}

𝜏 that maximizes its expected profit over the second stage decision {𝑥𝑛
𝜏}𝑛∈𝑁, 𝑋𝑁

𝜏 and

also over the expected profits of future timeslots. This is formalized through a multi-stage
stochastic optimization problem that takes a nested form:

where the expectations are over dispatch orders 𝐷𝑡 and prices 𝜆up

𝑡 , 𝜆down
𝑡 , that depend on

decisions 𝑏𝑢𝑝
𝜏 , 𝑏𝑑𝑜𝑤𝑛

𝜏 through problem (3.4).

Since the aggregator has no information on the bids ℬ𝑡 of other players for the current or
future timeslots, it cannot tackle problem (3.6) optimally, since it cannot have an expression

32

for the dispatch orders or prices. In what follows, we propose a method through which the
aggregator can handle this uncertainty upon deciding its FlexOffers in the first stage.

Let us consider a set 𝑆 of arbitrary scenarios 𝑠 ∈ 𝑆 for the aggregator’s dispatch orders,
constrained by (3.3b) and (3.3c) over the entire horizon 𝑇. Let the sequence of dispatch

orders for a certain scenario 𝑠 be denoted as 𝐃𝑠 = {𝐷𝑠
1, 𝐷𝑠

2, . . . , 𝐷𝑠
|𝑇|

} . We consider a
conservative strategy, where, given the dispatch information, the aggregator opts for
minimizing its total balancing energy and imbalance costs, as in:

Using problem (3.7), we can obtain the optimal variables 𝐗𝑁,𝑠
𝑡,∗ and respective optimal costs

𝐶𝑠
∗ for each scenario 𝑠. Then, for each scenario, we fix the values of 𝐗𝑁,𝑠

𝑡,∗ and 𝐶𝑠
∗, and solve a

fitting problem to decide the variables 𝑏𝑢𝑝
𝑡 , 𝑏𝑑𝑜𝑤𝑛

𝑡 for the entire horizon, such that the

distance between the average aggregator’s cost given by problem (3.7) and the cost given by
the aggregator’s FlexOffer function (3.3a), is minimized:

Using the above method, the Aggregator can retrieve a mapping from input data
P𝑁 , 𝑐𝑛(𝐱𝑛), 𝐹𝑛 to the decision for its FlexOffers 𝑏{𝑢𝑝,𝑑𝑜𝑤𝑛}

𝜏 . The FlexOffer estimation method

is summarized in Algorithm 1 below. However, a large number of scenarios may be required
before a good approximation is achieved, which can be impractical for real-time operation.
Thus, a Machine Learning (ML) based solution to this problem is described in the next section.

After receiving the actual dispatch 𝐷𝜏 for the current timeslot from the TSO, the aggregator
decides upon 𝑋𝑁

𝜏 and {𝑥𝑛
𝜏 }𝑛∈𝑁 by greedily maximizing the profit in the current timeslot,

assuming that its dispatch for future timeslots 𝑡 > 𝜏 will be 𝐷𝑡 = P𝑁
𝑡 :

33

where �̃�𝑛

𝑡 denotes the decisions made in the previous timeslots (which have to be fixed).

The FlexOffer estimation part of the method described in the previous section is
computationally expensive. That is because set 𝑆 is exponentially large in the number of
timeslots of the horizon 𝑇. Thus, many scenarios are needed, where for each scenario the
aggregator solves an optimization problem (namely (3.7)). Thus, in real-time operation, there
is no sufficient time to apply the method of the previous section.

In order to solve this problem, we propose the use of Machine Learning (ML) techniques to
train a decision making system for the aggregator’s FlexOffers. We assume that the
aggregator knows the form of functions 𝑐𝑛(⋅) and constraints 𝐹𝑛 and has statistical
knowledge over their parameters in the form of probability distributions to which these
parameters abide. The input data of the ML algorithm, denoted as 𝒰 , contains all the
parameters necessary for defining P𝑁 , 𝑐𝑛(𝐱𝑛), 𝐹𝑛. We run Monte Carlo simulations to obtain
a set 𝐾 of samples, where each sample 𝑘 ∈ 𝐾 contains a particular instance 𝒰𝑘 of the input
data. For each sample 𝒰𝑘 , we apply the method described in the previous section to obtain
the estimated bids 𝑏𝑘,{𝑢𝑝,𝑑𝑜𝑤𝑛}

𝜏 . Thus, using 𝒰𝑘 and 𝑏𝑘,{𝑢𝑝,𝑑𝑜𝑤𝑛}
𝜏 as input and output

respectively, we can train a ML algorithm. The training procedure is summarized in Algorithm
2 below. Once trained, the ML algorithm will be able to provide a fast decision on co-efficients
𝑏{𝑢𝑝,𝑑𝑜𝑤𝑛}

𝜏 for the next timeslot ahead, upon receiving the information on P𝑁 , 𝑐𝑛(𝐱𝑛), 𝐹𝑛 in

online operation.

The task at hand is a regression problem. That is, given a specific input, a set of numerical
values are predicted. Various ML algorithms were tested for this UCS 4.3 problem. In this
document, we present the two methods that achieved the most promising results, namely,
Deep Neural Networks (DNNs) and Random Forests (RFs).

34

3.4.1 Deep Neural Networks (DNNs)

Deep Neural Networks (DNNs) consist of one input layer through which the features are fed
into the network. A number of hidden layers follows, each one comprised of several neurons.
The large number of layers in DNNs allows the network to learn complex representations.
The challenge is to define the number of hidden layers and neurons in order to balance the
accuracy and the computational complexity of the model. There is no standard formula to do
this, and a trial-and-error approach is usually required.

3.4.2 Random Forests (RF)

Random Forests is an ensemble learning method. Ensemble methods use many learning
algorithms combined. They obtain better predictive performance when compared to any of
the learning algorithms alone. One ensemble method is bagging of classification or regression
trees. In this method, successive trees are independently constructed using a bootstrap
sample of the data set. A majority vote is taken for the final prediction. Bagging improves the
accuracy and also reduces variance and over-fitting. In random forests, the best split of a
given node is decided using a predictor chosen randomly from the set of predictors of that
node. Depending on the specific scenario, they can outperform other regression or
classification techniques based on support vector machines or neural networks. More
information about random forests can be found in 17.

3.5.1 Simulation setup and evaluation framework

To evaluate the proposed method, we consider a setting where the aggregator represents a
portfolio of 100 flexible loads and a RES generation facility. The method is evaluated for an
operational horizon of 24 timeslots. A load 𝑛 ∈ 𝑁 features an arrival time arr𝑛 and a
departure time dep𝑛 . Its feasible interval for energy allocation is denoted as 𝐻𝑛 =
[arr𝑛 , dep𝑛] ⊂ 𝑇.

The portfolio consists of two classes of loads, namely Thermostatically Controlled Loads
(TCLs) 𝑗 ∈ 𝑁𝑇𝐶𝐿 , including Air-Conditioners, Water Heaters etc., and EVs 𝑖 ∈ 𝑁𝐸𝑉 , where
|𝑁𝑇𝐶𝐿| = |𝑁𝐸𝑉| = 50 and 𝑁 = 𝑁𝑇𝐶𝐿 ∪ 𝑁𝐸𝑉. For each family of loads, we present the models
below.

An EV 𝑖 ∈ 𝑁𝐸𝑉 is constrained by an upper and lower power consumption level:

x𝑖
min ≤ 𝑥𝑖

𝑡 ≤ x𝑖
max (3.10)

and it cannot be charged before arrival or after departure:

𝑥𝑖
𝑡 = 0, 𝑡 ∉ 𝐻𝑖 (3.11)

Moreover, the EV has a certain energy requirement E𝑖 to be fulfilled. When the total charged
energy upon departure is less than E𝑖, the end user bears a cost:

35

𝑐𝐸𝑉(𝐱𝑖) =

{
0, |∑ h𝑖𝑡∈𝑇 ⋅ 𝑥𝑖

𝑡 − E𝑖| ≤ tol𝑖

w𝑖 ⋅ (∑ h𝑖𝑡∈𝐻𝑖
⋅ 𝑥𝑖

𝑡 − E𝑖)
2

, |∑ h𝑖𝑡∈𝑇 ⋅ 𝑥𝑖
𝑡 − E𝑖| > tol𝑖

 (3.12)

where tol𝑖 is a tolerance level, h𝑖 is the EV’s charging efficiency, and w𝑖 is the load’s elasticity
parameter. Observe that the EV’s cost function exhibits inter-temporal couplings, since the
cost of the EV is only realized at its departure timeslot dep𝑖 , but is, however, dependent on
the charging decisions of all previous timeslots.

For TCL 𝑗 ∈ 𝑁𝑇𝐶𝐿 let 𝜃𝑗
𝑡 denote the temperature measured by the TCL’s sensor. The transition

function of the temperature is defined as:

𝜃𝑗
𝑡 = 𝜃𝑗

𝑡−1 + ins𝑗(θenv
𝑡 − 𝜃𝑗

𝑡−1) − con𝑗𝑥𝑗
𝑡−1 (3.13)

where θenv
𝑡 is the environment’s temperature, ins𝑗 is a parameter related to temperature

decay (e.g. insulation) and con𝑗 is a conversion factor (from electrical power to thermal

energy). Similarly to constraints (3.10) and (3.11), for TCLs we have:

x𝑗
min ≤ 𝑥𝑗

𝑡 ≤ x𝑗
min (3.14)

𝑥𝑗
𝑡 = 0, 𝑡 ∉ 𝐻𝑗 (3.15)

where 𝐻𝑗 is the TCL’s operation interval. The TCL has a setpoint θsp,𝑗
𝑡 , which represents the

user’s target temperature. Similarly to EVs, the TCL’s cost function is defined as:

𝑐𝑇𝐶𝐿(𝐱𝑗) =

{
0, |𝜃𝑗

𝑡 − θsp,𝑗
𝑡 | ≤ tol𝑗

∑ w𝑗𝑡∈[arr𝑗,dep𝑗] ⋅ (𝜃𝑗
𝑡 − θsp,𝑗

𝑡)
2

, |𝜃𝑗
𝑡 − θsp,𝑗

𝑡 | > tol𝑗

 (3.16)

The aggregator also features local RES generation facilities, with a generation profile R =

{R1, R2, . . . R|𝑇|}. In order to obtain realistic values for P𝑁, each FlexAsset’s intended demand
p𝑛

𝑡 for each timeslot, is set to the value that incurs minimum cost to the FlexAsset (assuming
no balancing actions by the aggregator), i.e.

Thus, the Aggregator’s net demand profile P𝑁 under no flexibility actions is defined by:

Having defined parameters P𝑁 , cost functions 𝑐𝑛(𝐱𝑛) and the feasible sets for 𝐱𝑛 , we can
now apply the ML-based methods proposed in the previous section. Specifically, parameters
θenv

𝑡 , R𝑡 , arr𝑛
𝑡 , dep𝑛

𝑡 , E𝑖, θsp,𝑗
𝑡 , w𝑛 are the features together with P𝑁.

36

Now, we evaluate the proposed ML-based method for the case study presented above. The
EVs’ charging efficiency, h𝑖, follows a uniform distribution between 94% and 100%, while the
parameter con𝑗 is uniformly sampled from the interval [3, 4]. The average outdoor

temperature θenv(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) is assumed to follow the temperature of a typical summer day
in southern Europe: θenv

0 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒) = 83 F and θenv
𝑡 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒) = θenv

𝑡−1(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) + 3 F,
assuming a simulation horizon of 24 timeslots, that represents quarterly intervals from
morning to noon. The actual value for θenv

𝑡 follows a normal distribution around the
respective value of θenv

𝑡 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒) , with a standard deviation of 3 F. The local RES
production for each timeslot is sampled from a normal distribution with mean values starting
from 2 kWh and increasing by 2 kWh in every next timeslot. The standard deviation for each
timeslot is set equal to 0.25 kWh of the respective mean value. The quantities Bup

𝑡 , Bdown
𝑡

were set equal to 0.1P𝑁
𝑡 . The rest of the simulation setup’s parameters are sampled from

normal distributions, as those are defined in the table below. Finally, upon solving the
optimization problem of the method, the absolute values were linearized by using an
auxiliary variable.

Table 4: Summary of values/distributions of simulation setup’s parameters

Parameter Comments Value Average Value Standard deviation

x𝑛
min ∀𝑛 0 - -

x𝑖
max for EVs - 3 0.1

x𝑗
max for TCLs - 5 0.5

arr𝑖 for EVs - 4 2.5

arr𝑗 for TCLs - 3 1

dep𝑖 for EVs - arr𝑛 + 4 1

dep𝑗 for TCLs |𝑇| - -

E𝑖 - - x𝑖
max(dep𝑖 − arr𝑖) − 2 0.5

ins𝑗 - - 0.05 0.01

θsp,𝑗
𝑡 - - 77 1

w𝑛 ∀𝑛 - 0.5 0.1

3.5.1.1 Wholesale Energy Market Model (WEMM)

In order to evaluate the proposed method, we use a model through which the wholesale
electricity market receives the FlexOffer of the aggregator and decides whether it is going to
request balancing energy (up or down) from the aggregator. In reality, this decision is made
by problem (4), where the FlexOffers from all market participants are taken into account.
However, since we are only interested in the aggregator’s dispatch, for the scope of the
FLEXGRID UCS 4.3, we abstract away the complete market model and construct a Wholesale
Energy Market Module (WEMM) that provides decisions only on the aggregator’s dispatch
and the balancing energy price 𝜆𝜏 for the current timeslot 𝜏.

In case the aggregator is called to offer balancing energy up (i.e. reduce load), it follows that
price 𝜆𝜏 is higher than its offer 𝑏𝑢𝑝

𝜏 . In this case, the WEMM randomly generates a price that

is within the interval [𝑏𝑢𝑝
𝜏 , 𝜆𝑚𝑎𝑥], where 𝜆𝑚𝑎𝑥 is the administrative upper bound for the

balancing energy price. In case the aggregator is called to buy balancing energy down (i.e.

37

increase load), it follows that price 𝜆𝜏 is lower than its offer 𝑏𝑑𝑜𝑤𝑛
𝜏 . In this case, the WEMM

randomly generates a price that is within the interval [𝜆𝑚𝑖𝑛 , 𝑏𝑑𝑜𝑤𝑛
𝜏] , where 𝜆𝑚𝑖𝑛 is the

administrative lower bound. Parameters 𝜆𝑚𝑖𝑛 , 𝜆𝑚𝑎𝑥 are set to zero and 20 cents
respectively. The model for the WEMM is described in the following procedure:

1. First, the WEMM receives the aggregator’s FlexOffers 𝑏𝑢𝑝
𝜏 and 𝑏𝑑𝑜𝑤𝑛

𝜏 for the timeslot

ahead.

2. The module randomly decides if it is going to need upward or downward balancing
energy, with equal probability unless stated otherwise.

3.

a. for upward balancing energy (the aggregator reduces its load): The aggregator
is not called, (i.e., requested to follow its market schedule, 𝐷𝜏 = P𝑁

𝜏) with
probability ϱ𝑢𝑝,𝑜𝑢𝑡 = 𝑚𝑎𝑥{1, 𝑏𝑢𝑝

𝜏 /𝜆𝑚𝑎𝑥}. On the other hand, the aggregator

is called to offer balancing energy Bup
𝜏 , i.e. 𝐷𝜏 = P𝑁

𝜏 − Bup
𝜏 , with probability

ϱ𝑢𝑝,𝑖𝑛 = 1 − ϱ𝑢𝑝,𝑜𝑢𝑡 , at a price 𝜆𝑢𝑝
𝜏 , which is picked randomly from the

interval [𝑏𝑢𝑝
𝜏 , 𝜆𝑚𝑎𝑥].

b. for downward balancing energy (the aggregator increases its load): The
aggregator is called to offer balancing energy down Bdown

𝜏 (i.e., 𝐷𝜏 = P𝑁
𝜏 +

Bdown
𝜏) with probability ϱ𝑑𝑜𝑤𝑛,𝑖𝑛 = 𝑚𝑎𝑥{1, 𝜆𝑚𝑖𝑛/𝑏𝑑𝑜𝑤𝑛

𝜏 } , at a price 𝜆𝑑𝑜𝑤𝑛
𝜏 ,

which is picked randomly from the interval [𝜆𝑚𝑖𝑛 , 𝑏𝑑𝑜𝑤𝑛
𝜏] . Finally, the

aggregator is not called, (i.e., requested to follow its market schedule 𝐷𝜏 =
P𝑁

𝜏) with probability ϱ𝑑𝑜𝑤𝑛,𝑜𝑢𝑡 = 1 − ϱ𝑑𝑜𝑤𝑛,𝑖𝑛.

The procedure through which the setup is simulated is described in Algorithm 3 below:

3.5.1.2 Machine learning methods

We assumed 1000 samples to generate a single case of mapping from the defined set of
features to the optimal bids 𝑏𝑢𝑝

𝜏 , 𝑏𝑑𝑜𝑤𝑛
𝜏 . We evaluated the ML algorithms for a total of 1000

cases. We considered 2-fold cross validation with 3 repeats. The accuracy metric is the mean
absolute error and the standard deviation of the errors.

Regarding the Deep Neural Networks (DNN) method, we used the Keras deep learning library
along with tensorflow. The architecture that we considered is the following: an input layer,
seven hidden layers and one output layer. The number of neurons of the input layer and of
the hidden layers is equal to the number of features. In the hidden layers, we assumed a
dropout rate equal to 0.2. The number of neurons of the output layer is equal to the number

38

of coefficients 𝒃𝒖𝒑
𝝉 , 𝒃𝒅𝒐𝒘𝒏

𝝉 . We chose the rectifier activation function for the hidden layers

and the Adam optimization algorithm. Finally, we considered 1000 epochs.

As of the Random Forests (RF) method, we used the Random Forests regressor from the
Scikit-Learn library. The number of trees in the forest is 100. The nodes are expanded until
all leaves are pure or until all leaves contain less than 2 samples. The minimum number of
samples required to be at a leaf node is 1.

3.5.2 Performance evaluation results

In the next subsections, we perform various experiments and simulations with respect to
various Key Performance Indicators (KPIs):

3.5.2.1 Comparison of the proposed ML methods

In the table below, we present the mean and the standard deviation of the score (defined as
the Mean Absolute Error - MAE) of the ML algorithms for the aforementioned scenarios. We
notice that both algorithms are sufficiently accurate even with a relatively low amount of
training cases. RFs perform a bit better than DNNs, but the difference is not very large to be
deemed significant. Once the data is generated, DNNs require a training time of 60 seconds
on a Quad Core CPU at 4 GHz, while RFs require 10 seconds. Note that these running times
refer to the training phase. The resulting estimations require much less time (around 0.11
seconds) to provide a bid estimate. Thus, both models are suitable for dynamic scenarios to
promptly acquire an efficient FlexOffer decision.

Table 5: Accuracy of ML Algorithms

Algorithm Mean Standard Deviation

DNN 0.27 0.005

RF 0.29 0.004

3.5.2.2 Aggregator’s profits

Algorithm 3 was run for a number of different cases for the imbalance price 𝜆𝐼𝑚𝑏 . More
specifically, the setting was simulated for 𝜆𝐼𝑚𝑏 = {0,5,10, . . . ,40}. For each value of 𝜆𝐼𝑚𝑏, a
number of setting instances were simulated and the results on the aggregator’s profits were
averaged out over all instances. The figure below shows the resulting average aggregator’s
profits as a function of 𝜆𝐼𝑚𝑏. The aggregator’s profits are always positive. This is not trivial,
since if the aggregator does not submit FlexOffers in the balancing market and follows its
day-ahead market schedule, it obviously makes zero profit, and if the bidding method
performed poorly (e.g. resulted in major imbalances or FlexAsset costs), the aggregator’s
profit could even be negative.

As it can be observed, the aggregator’s profits decline for higher values of 𝜆𝐼𝑚𝑏. However,
the curve gradually stabilizes, especially after 𝜆𝐼𝑚𝑏 surpasses 𝜆𝑚𝑎𝑥 , which means that as
𝜆𝐼𝑚𝑏 increases, the profits are no longer affected significantly by 𝜆𝐼𝑚𝑏. The reason for this, is

39

that for 𝜆𝐼𝑚𝑏 > 𝜆𝑚𝑎𝑥, the aggregator opts for minimizing its imbalances. Thus, the fact that
the profits are not affected by 𝜆𝐼𝑚𝑏 after a certain point, means that the aggregator succeeds
in minimizing imbalances, which in turn indicates that the proposed ML method achieves a
very good capturing of the aggregator’s flexibility cost, i.e., the FlexOffers made by the
proposed ML method do not result in dispatch decisions that the aggregator cannot
eventually follow.

Figure 6: Aggregator’s profit as a function of the imbalance price

3.5.2.3 Imbalances

In order to verify the indication of the previous subsection and further elaborate on the
previous results, we estimated the probability that the aggregator’s FlexOffer results in a
dispatch order, which the aggregator does not prefer to follow. This can happen when the
flexibility costs of the FlexAssets for following the dispatch, are higher than the imbalance
price (which, in turn, means that the estimate of flexibility costs by the ML algorithm was not
good). The setting was simulated for different values of parameter tol𝑛 (the same for all
FlexAssets). For each value of tol𝑛, we conducted a number of 1000 simulations and counted
the number of experiments in which an imbalance occurred (no matter how small). The
probability of imbalance was estimated as the number of experiments with imbalances,
divided by 1000, and is depicted in the figure below for different values of tol𝑛.

Figure 7: Estimated probability of imbalance for different values of the tolerance level 𝐭𝐨𝐥𝒏

40

3.5.2.4 Flexibility aggregation

In this subsection, we examine how well the proposed flexibility aggregation algorithm
captures the FlexAssets’ flexibility level. In order to control the overall flexibility of the
FlexAssets via a single parameter, we use the tolerance tol𝑛. A lower value of tol𝑛 means
lower flexibility for the set of FlexAssets, since their cost functions (12) and (16) are activated
more easily. In contrast, a high tol𝑛 , gives the aggregator more flexibility to shape the
FlexAssets’ profiles without suffering flexibility costs. The figure below presents the resulted
aggregator’s FlexOffers (averaged over all timeslots) for different values of tol𝑛. The figure
verifies that for higher values of tol𝑛, the method is able to capture the increased flexibility
of the FlexAssets, since it results in lower FlexOffer. Note that a lower FlexOffer means that
the aggregator is more likely to be dispatched (even for a lower price), therefore it
communicates to the TSO that the aggregator is more flexible towards offering balancing
energy.

Figure 8: Average aggregator’s offers/bids for different levels of FlexAsset flexibility

3.5.2.5 FlexOffer behavior

Figure 9: Aggregator’s offers/bids for each timeslot

41

For the purposes of this experiment, we modified the WEMM to always ask from the
aggregator to offer balancing energy up (curtail load). Thus, the aggregator curtails energy
consumption and in every next timeslot, it is asked to curtail again. The figure above shows
how the aggregator’s FlexOffers 𝑏𝑢𝑝

𝑡 , 𝑏𝑑𝑜𝑤𝑛
𝑡 are affected in this case along the time horizon.

The results indicate that when the aggregator is asked to curtail energy in a given timeslot,
the proposed method increases the requested price for further curtailment in the next
timeslot and, after a certain point, increases also the aggregator’s FlexOffer to buy balancing
energy. After a certain point in time, this phenomenon is counter-balanced by the departure
of many EVs (and the arrival of new ones), which is why the offer/bid prices do not further
increase after that point.

Within M19-M26, we will elaborate on the UCS 4.3 work in order to convey more system-
level simulations to evaluate the performance of our proposed algorithms for the Distribution
Level Flexibility Markets (DLFM), too. As already mentioned above, in this report we decided
to focus on the TSO’s balancing energy market, which represents the existing regulatory
conditions in most EU countries, today. In the next months, we will focus on the aggregator’s
participation in near-real-time DLFM.

This work is closely inter-related with UCS 2.3, which refers to ESP’s stacked revenue
maximization by its participation in several markets, such as: i) day-ahead energy market
operated by MO, ii) day-ahead reserve market operated by TSO, iii) day-ahead DLFM
operated by FMO, iv) near-real-time DLFM operated by DSO, and v) near-real-time balancing
market operated by TSO. Therefore, we will provide more performance evaluation results
showcasing the optimal FlexOffers made by an aggregator in order to co-optimize its
participation in all the above-mentioned markets.

Another research task, which is also related with respective WP6 work is to integrate the
proposed FlexOffer creation algorithm into the Automated Flexibility Aggregation Toolkit
(AFAT) and FLEXGRID ATP. Thus, the aggregator user will be able to utilize the AFAT to make
efficient FlexOffers in near-real-time balancing markets and DLFMs. In the online operation
mode, the aggregator will be able to automatically create a FlexOffer in real-time (in order to
submit it in the ATP) based on the current availability of FlexAssets (cf. FlexContract per
FlexAsset that denotes the available reserve capacity). In the offline operation mode, the
aggregator will be able to run “what-if” scenarios to see whether it is more beneficial to
participate in the existing TN-level balancing market or DN-level balancing market (i.e.
DLFM). If the FlexOffer is not accepted in DLFM, it can be automatically forwarded to the
TSO’s balancing market via a respective Application Programming Interface (API).

42

4 An aggregator operates an ad-hoc B2C
flexibility market with its end energy
prosumers by employing advanced pricing
models and auction-based mechanisms

This chapter deals with the research problem of UCS 4.2. In FLEXGRID, we propose a novel
B2C flexibility market architecture through which an aggregator will be able to optimally
operate a market in which the various small-scale distributed FlexAssets (DFAs) compete with
each other. In particular, we draw on concepts of mechanism design theory in order to define
an iterative, auction-based mechanism, consisting of an allocation rule and a payment rule.
The allocation rule refers to the way that the aggregator decides upon how much
consumption reduction/increase will be allocated to each end user (i.e. energy prosumer)
according to the feedback obtained through the auction process. The payment rule refers to
the way the aggregator decides upon the reward of each user for his/her allocation, provided
that the end user makes the corresponding contribution. Through the auction procedure, the
aggregator exchanges messages with the end users in the form of queries. A query in our
case is a price signal communicated from the aggregator to the end user, to which the end
user responds with his/her preferred action (e.g. consumption reduction) according to this
signal. A main research novelty of our proposed work is that we consider the case in which
an end user may respond untruthfully if he/she finds that to be in his/her interest.

Within FLEXGRID UCS 4.2 context, we propose advanced retail market mechanisms
(ARMM) that can be used by an aggregator in order to operate a novel B2C flexibility
market architecture. Our ultimate goal is to integrate the most important research
algorithms in the FLEXGRID ATP (TRL 5) and more specifically in the Automated Flexibility
Aggregation Toolkit (AFAT).

Through AFAT, the aggregator user will be able to run various “what-if” simulation
scenarios (offline operation) in order to determine better ways (via retail pricing
schemes) to operate a novel B2C flexibility market, in which end energy prosumers
compete with each other. In other words, the aggregator will run a retail pricing algorithm
to test and evaluate the impact that new FlexContracts (with its end users) would have on
several KPIs such as: i) aggregator’s revenues, ii) aggregated end users’ welfare, iii) quantity
of flexibility offered to the system, iv) individual end user’s welfare.

Based on the AFAT’s results (TRL 5), the aggregator user will be able to intelligently
identify how it can recommend a new (more beneficial) FlexContract to a set of end
energy prosumers. This novel FLEXGRID service is expected to help the aggregator to
realize deep relationship with its customer portfolio and thus make it more competitive in
the future retail/B2C flexibility markets.

43

In an environment with high RES penetration, an important asset is the load flexibility at the
demand side. More precisely, Distributed Flexibility Assets (DFAs) are distributed ESS and
smart devices that exhibit flexibility in their energy demand (e.g. EVs and HVAC units). DFAs
are envisaged to participate in electricity markets through energy aggregators. Academic
research was quick to design optimization and control methods for extracting the value of
DFAs. However, actual end-user engagement and adoption of real-life commercial
applications are yet to catch up. A significant barrier has been the lack of intelligent agents
that negotiate with aggregators on behalf of the end user and deliver an attractive trade-off
between consumption profile and energy bill reduction. However, advanced modelling tools
and advancements in digital economies are ready to facilitate real time market interaction
between intelligent end user agents and intelligent aggregator agents. In this way,
aggregators can buy flexibility from DFAs in order for the former to be able to enhance their
position in B2B markets and increase their profitability, while also offering services to the
grid operators.

In FLEXGRID, we consider B2B flexibility markets in which the system operators (i.e. DSO/TSO)
are FlexBuyers, while aggregators are FlexSuppliers. Moreover, we also assume ad-hoc B2C
flexibility markets (or else retail flexibility markets) operated by an aggregator entity, in which
end energy prosumers compete with each other. In order to design such B2C flexibility
markets in an efficient way, novel Market Mechanisms (MMs) need to be designed. A MM
includes the bidding protocols for the market participants and the rules of market operation,
namely an allocation rule and a pricing rule. Traditional, static retail pricing schemes are not
able to capture the dynamics of the electricity network and thus traditional utilities fail to
catch up with the new needs of the energy market. In contrast, dynamic MMs are needed in
order to efficiently manage DFAs.

A Market Mechanism (MM) can be: i) Iterative: Traditional time-of-use (TOU) MMs are open-
loop, in the sense that the end user is insulated from the other users’ actions (this lack of
feedback and coordination between users is a major source of instability) and ii) Online:
There is inherent uncertainty in the electricity grid, partly because of imperfect forecasts
about the inflexible part of user demand and partly because of uncertainty in the supply side.
A dynamic MM needs to be able to adjust to online signals in real-time. On the other hand,
dynamic/intelligent MMs need a corresponding intelligence on the end user side in order to
function. For example, an end user that is manually making decisions cannot catch up with
an iterative and online MM. This means that intelligent agents have to be developed on the
end user’s side, so as to negotiate on the user’s behalf.

From a research perspective, Market Mechanisms (MMs) for electricity grids can be
generally evaluated through seven requirements (KPIs):
1. Optimality/efficiency: The difference between the value that users give to their Energy

Consumption Curves (often called utility function) and their energy cost (this difference
is noted in the international literature as Social Welfare).

44

2. Incentive Guarantees/Strategy proof: The resilience of the system to end users who
benefit from declaring false preferences.

3. Privacy protecting: The quantity of information that is required from the end user.
4. Convergence/scalability: The speed of convergence of MMs and its scalability with

respect to the number of end users.
5. Fairness: The policy for distributing the energy costs and awards to energy consumers

should be fair so that it is also able to trigger behavioural changes (e.g. participation in
flexibility markets). For example, end users would be unwilling to participate to Demand
Response events if not-participating or cheating end users benefit from them.

6. Competitiveness/sustainability: The MM should offer to the end users (prosumers)
attractive charges with respect to their Energy Consumption Curve (ECC), while being
practically implementable/realizable.

7. Externalities: Other positive/negative outcomes of the MM (e.g., controllability in order
to satisfy system-wide constraints, simplicity for end users to understand the mechanism,
etc.).

A detailed survey on related works from the international literature is provided in section 5.2
of the previous D3.113, so the interested reader can refer to this document for extensive
details. This survey work identified all related research ideas for deploying advanced retail
pricing schemes and market mechanisms in the modern electricity markets. Here, we
summarize the FLEXGRID’s contributions and novelties.

Within the FLEXGRID context, we propose a novel B2C flexibility market operated by an
aggregator, which deals with all the afore-mentioned requirements (or else KPIs) as
follows:

1. Regarding “optimality/efficiency” KPI, we prove that our proposed scheme
achieves the Vickrey-Clarke-Groves (VCG) outcome. VCG mechanism is broadly
considered as the cornerstone mechanism design as it is provably the unique
mechanism that achieves the optimal social welfare. Thus, our proposed scheme
does not sacrifice efficiency at all to satisfy other KPIs.

2. As of “incentive guarantee/strategy proof” KPI, our scheme satisfies the
Dominant-Strategy-Incentive-Compatibility (DSIC) property, which is considered
the strongest incentive guarantee in the international literature.

3. Regarding the “privacy protecting” KPI, our proposed scheme is suitable for a
distributed implementation unlike the centralized optimization solution that has
already been analyzed in UCS 4.1 in chapter 2 of this document. In other words, this
means that the end energy prosumers do not have to reveal their utility functions
(or else sign any binding FlexContract with the aggregator), but just respond to the
retail/B2C flexibility market price signals sent by the aggregator in an online
fashion.

4. Regarding the “convergence/scalability” KPI, we also prove both analytically and
via system-level simulations (cf. section 4.5 below) that our proposed algorithmic
solution converges quickly for a large number of end energy prosumers that
participate in the B2C flexibility market.

13 https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf

https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D3.1_final_version_29092020.pdf

45

5. With the term “fairness”, we refer to the problem of state-of-the-art Real Time
Pricing (RTP) schemes, which do not strongly motivate end energy prosumers to
modify their electricity consumption habits. This happens mainly due to the fact
that in each given timeslot, all end users get the same real-time price, namely both
flexible and inflexible end users will get the same reward for this given timeslot.
Our proposed market mechanism is based on our previously published work on a
Behavioral RTP (B-RTP) scheme14 that offers an easily adjustable level of financial
incentives to end users by fairly rewarding the desirable behavioral electricity
consumption changes.

6. As of “competitiveness/sustainability” KPI, via our proposed scheme, the
aggregator can configure two basic parameters (i.e. ‘γ’ and ‘p’ parameters). ‘γ’
parameter defines the level of price-based incentives provided to each end user
towards behavioral change, while ‘p’ parameter denotes the percentage of
aggregator’s revenues that will be distributed to end users, while the residual
amount of revenues will be kept as aggregator’s profits. Hence, the aggregator can
easily adjust these parameters in order to be able to adapt to the ongoing
conditions of its business (e.g. when the competition with other aggregators is
harsh, then it can keep less profits for itself and distribute more financial rewards
to flexible end energy prosumers).

7. Finally, as an “externality” KPI, the proposed scheme is transparent to any type of
FlexRequest that needs to be satisfied. For example, a FlexRequest can be created
by: i) a DSO to deal with local congestion and voltage control issues, ii) a TSO to deal
with transmission network level imbalances, iii) the aggregator itself to deal with
its internal portfolio’s imbalances, iv) a BRP to deal with its imbalances in a given
geographical area under its balancing responsibility, etc. This functionality is very
important for the proposed B2C flexibility market as it can be easily integrated with
the structure and respective needs of the B2B flexibility markets realized in
FLEXGRID ATP, too.

Within FLEXGRID project’s context, we consider a novel B2C flexibility market comprised of
an aggregator and a set 𝒩 ≜ {1,2, … , 𝑛} of 𝑛 self-interested end energy prosumers,
hereinafter referred to as end users. We also consider a discrete representation of time,
where continuous time is divided into timeslots 𝑡 ∈ 𝒯 of equal durations 𝑠, where set 𝒯 ≜
{1,2, … , 𝑚} represents the scheduling horizon. Each end user possesses a number of
controllable appliances, with each appliance bearing an energy demand. If the consumptions
of different appliances are not coupled (independent of each other), the appliances can
participate in the FlexRequest (or else DR event) virtually as different end users. The bills of
an end user’s appliances will add up to calculate the bill of the actual end user. Thus,
throughout this chapter, we can consider one appliance per end user for ease of
presentation.

14 K. Steriotis, G. Tsaousoglou, N. Efthymiopoulos, P. Makris, E. Varvarigos, “A Novel Behavioral Real Time Pricing
Scheme for the Active Energy Consumers’ Participation in Emerging Flexibility Markets”, Elsevier Sustainable
Energy, Grids and Networks (SEGAN) Journal, vol. 16, pp. 14-27, Dec
2018, https://www.sciencedirect.com/science/article/pii/S2352467718300201.

https://www.sciencedirect.com/science/article/pii/S2352467718300201

46

4.2.1 End user’s energy consumption model and utility function

An appliance requires an amount of energy for operation. For example, if an appliance’s
operating power is 1Watt, and 𝑠 = 1 hour, then the energy that the appliance consumes in
one timeslot of operation is 1𝑊ℎ. This energy consumption is measurable in real-time and
can be shed upon request, in exchange for monetary compensation. Such a request for
consumption modification may be called a FlexRequest that is published in a S/W platform
or else online marketplace like the FLEXGRID ATP that is developed within FLEXGRID WP6
context. In cases where a FlexRequest is scheduled ahead of time, a strategic end user can
falsely claim that he/she intended to consume energy at the time of the FlexRequest and that
he/she “reduced” consumption in response to the FlexRequest, while in reality he/she never
intended to consume energy in that time. However, in this work, we deal with a real-time DR
process. Each end user’s consumption is measured in real-time, and, when a FlexRequest
occurs, the end user’s curtailment is measured against his/her last real-time consumption
measurement and not against the end user’s declared intended consumption. Thus, the
consumption measurement is taken before the FlexRequest, so the end user cannot
manipulate it since he/she does not know when a FlexRequest is going to occur. The high-
level system model that we consider in this UCS is illustrated in the figure below.

Figure 10: System model for FLEXGRID UCS 4.2

A request for consumption reduction (i.e. FlexRequest) is made by some third party (e.g. the
DSO/TSO) along with the respective reward function (i.e. price/quantity curve) and the
aggregator takes on the task of providing the requested service by setting up a B2C flexibility
market among the end energy prosumers of its portfolio. Upon a FlexRequest in timeslot 𝑡,
the aggregator offers a per-unit reward to the end users for consumption reduction. User 𝑖
can respond by reducing his/her consumption by a quantity 𝑞𝑖

𝑡, assumed to be positive (𝑞𝑖
𝑡 ≥

0), without loss of generality. As described earlier and also in chapter 5 of previous D3.1, the

decisions for 𝑞𝑖
𝑡 can be taken by an intelligent agent (on behalf of the actual end user and

47

according to the end user’s preferences) in order to disengage the actual end user from real-
time participation.

The consumption reduction 𝑞𝑖
𝑡 is characterized by its feasible set 𝑄𝑖 (defined by a set of

constraints on 𝑞𝑖
𝑡) and the discomfort function 𝑑𝑖(𝑞𝑖

𝑡) of end user 𝑖. The discomfort function
is private to each end user and expresses the minimum compensation in monetary units
(euros) that an end user requires, in order to reduce his/her consumption by the

corresponding amount. The discomfort, as a function of 𝑞𝑖
𝑡, can take various forms depending

on the appliance. We make the following assumptions on the form of function 𝑑𝑖(𝑞𝑖
𝑡):

Assumption 1. Zero consumption reduction, brings zero discomfort to the user: 𝑑𝑖(0) = 0

Assumption 2: The discomfort function is convex, so that additional increase of 𝑞𝑖
𝑡 brings

increasing discomfort to the user:
𝑞𝑖𝐴

𝑡 ≥ 𝑞𝑖𝐵
𝑡 ⇔ 𝑑𝑖(𝑞𝑖𝐴

𝑡 + 𝜀) − 𝑑𝑖(𝑞𝑖𝐵
𝑡 + 𝜀) ≥ 𝑑𝑖(𝑞𝑖𝐴

𝑡) − 𝑑𝑖(𝑞𝑖𝐵
𝑡), ∀𝜀, 𝑞𝑖𝐴

𝑡 , 𝑞𝑖𝐵
𝑡 > 0.

Detailed example appliance models (including operational constraints) are described in

section 4.5 below. Nevertheless, the discomfort function 𝑑𝑖(𝑞𝑖
𝑡) is kept general for the

moment in order to emphasize that the theoretical results to be presented in the following
sections are valid for any end user model that satisfies the assumptions above.

In order to incentivize end users towards reducing their consumption, the aggregator offers

a reward 𝑟𝑖(𝑞𝑖
𝑡). An end user’s utility is defined as the difference between his/her discomfort

for the consumption reduction realized and the reward he/she receives for achieving this
reduction:

𝑈𝑖 = ∑ [𝑟𝑖(𝑞𝑖
𝑡) − 𝑑𝑖(𝑞𝑖

𝑡)]𝑡∈𝒯 . (4.1)

In order to offer the rewards 𝑟𝑖(𝑞𝑖
𝑡), the aggregator draws on the reward offered by the

FlexBuyer that requests the reduction (i.e. FlexRequest), as described in the following
subsection.

4.2.2 FlexRequest and the aggregator’s problem

Let 𝐿𝑡 denote the aggregated consumption of all end users in

𝒩, as seen by the FlexBuyer, within a certain time interval 𝑡. The energy cost is modeled as

a quadratic function of 𝐿𝑡:

𝐶𝑡 = 𝑐1𝐿𝑡 + 𝑐2(𝐿𝑡)2

Upon a new FlexRequest, the FlexBuyer asks for a reduction of the end users’ aggregated

consumption and offers monetary incentives to the aggregator towards its realization. Let 𝐷𝑡

denote the reduction from baseline consumption 𝐿𝐵
𝑡 to consumption 𝐿𝐵

𝑡 − 𝐷 at time interval

𝑡. The respective cost reduction is:

𝐶(𝐿𝐵
𝑡) − 𝐶(𝐿𝐵

𝑡 − 𝐷) = 𝑐1𝐿𝐵
𝑡 + 𝑐2(𝐿𝐵

𝑡)2 − 𝑐1(𝐿𝐵
𝑡 − 𝐷) − 𝑐2(𝐿𝐵

𝑡 − 𝐷)2
which reads:

𝐶(𝐿𝐵
𝑡) − 𝐶(𝐿𝐵

𝑡 − 𝐷) = (𝑐1 + 2 ∗ 𝑐2 ∗ 𝐿𝐵
𝑡) ∗ 𝐷 − 𝑐2𝐷2

48

We set 𝑎 = 𝑐1 + 2 ∗ 𝑐2 ∗ 𝐿𝐵
𝑡 and 𝑏 = 𝑐2 and the cost benefit 𝐶(𝐿𝐵

𝑡) − 𝐶(𝐿𝐵
𝑡 − 𝐷) is denoted

as a reward function 𝑅(𝐷):

𝑅𝑡(𝐷𝑡) = 𝑎 ∙ 𝐷𝑡 − 𝑏 ∙ (𝐷𝑡)2, 𝐷𝑡 ∈ [0, 𝐿𝑡], (4.2)

where 𝑎, 𝑏 are positive parameters with 𝑎 ≥ 2𝑏𝐿𝑡 so that it is an increasing function in the

range of permitted values. The proposed B2C flexibility market architecture is open to any

other choice of 𝑅𝑡(𝐷𝑡), provided it is an increasing and concave function. Thus, we assume

that upon a FlexRequest, the FlexBuyer offers a marginal per-unit reward for a reduction of

𝐷𝑡 units.

𝜇 =
𝑑(𝑅𝑡(𝐷𝑡))

𝑑(𝐷𝑡)
 (4.3)

The aggregator is responsible for aggregating the end users’ participation in the FlexRequest,
coordinating their actions, and dividing the compensation profits (rewards) among the end
users. We assume a communication network, built on top of the electricity grid, through
which the aggregator can exchange messages with the end users in an iterative and online
fashion as already explained above.

With respect to the system model described above, we would like to facilitate the allocation
of consumption reduction among the end users to maximize social welfare. Social welfare is
defined as the difference between the revenues 𝑅𝑡(𝐷𝑡) that the aggregator receives from
the FlexBuyer for the consumption curtailment 𝐷𝑡, as defined in Eq. (4.2), and the sum of the
discomforts that this curtailment causes to its end users. This problem can be formulated
from Eqs. (4) and (5) below:

𝐦𝐚𝐱
𝑞𝑖

𝑡∈Q𝑖,𝑖∈𝒩
{𝑅𝑡(𝐷𝑡) − ∑ [𝑑𝑖(𝑞𝑖

𝑡)]𝑖∈𝒩 } (4.4)

𝑠. 𝑡. 𝐷𝑡 = ∑ 𝑞𝑖
𝑡

𝑖∈𝒩 (4.5)

The problem defined by Eqs. (4.4) and (4.5) is a convex optimization problem and could be
solved efficiently if the local functions 𝑑𝑖(𝑞𝑖

𝑡) were known or truthfully disclosed by all end

users. However, 𝑑𝑖(𝑞𝑖
𝑡) of each user is not known and thus, problem (4.4) is typically solved

via dual decomposition in the demand side management (DSM) literature (see more details
about state-of-the-art related works in section 5.2 of D3.1). In this approach, the aggregator
iteratively increases a per-unit reward 𝜆 asking from the end users their consumption
reduction 𝑞𝑖

𝑡(𝜆) at each per-unit reward 𝜆 (auction query). At each iteration, each end user i

responds with his/her preferred 𝑞𝑖
𝑡(𝜆). A truthful (locally optimal) response by end user 𝑖,

denoted as 𝑞𝑖
�̃�(𝜆) , is one that maximizes 𝑖 ’s utility for reward 𝜆 . This is mathematically

formulated as the solution to maximization problem (4.6):

49

 𝑞𝑖
�̃�(𝜆) = argmax

𝑞𝑖
𝑡∈Q𝑖,𝑖∈𝒩

{𝜆 ∙ 𝑞𝑖
𝑡 − 𝑑𝑖(𝑞𝑖

𝑡)} (4.6)

Clearly, 𝑞𝑖
�̃�(𝜆) is non-decreasing in 𝜆, since 𝑞𝑖

𝑡 ≥ 0. The auction terminates when 𝜆 reaches a

value for which ∑ 𝑞𝑖
𝑡(𝜆)𝑖∈𝒩 = 𝐷𝑡(𝜆). The final price is called the market-clearing price of the

B2C flexibility market and is denoted by 𝜆𝑚𝑐. The allocation at 𝜆𝑚𝑐 is efficient if the end users
truthfully report their 𝑞𝑖

𝑡 at each query. However, truthful report may not be the best
strategy for every end user. To illustrate this, we present the following example.

Consider two end users and a given timeslot t. End User 1 operates a load with power
consumption 10 kW, while end user 2 operates a 50 kW load. Now suppose they participate

in a FlexRequest and their discomfort function is 𝑑𝑖(𝑞𝑖
𝑡) = 𝜔𝑖 ∙ (𝑞𝑖

𝑡)2, 𝑖 ∈ {1,2}, where their
true flexibility parameters are 𝜔1 = 𝜔2 = 0.1. The reward function is 𝑅𝑡(𝛥𝐿𝑡) = 5 · (𝛥𝐿𝑡) .
Should they act according to their true discomfort function parameters, their utilities (given
by Eq. (4.1)) at equilibrium would be 𝑈1 = 𝑈2 = 4.875 units. In case end user 2 acts

untruthfully according to 𝜔2
𝑓𝑎𝑘𝑒

= 0.2 , his/her utility at equilibrium will be 𝑈2 = 7 .

Therefore, the best strategy for User 2 is to be untruthful.

The previous example demonstrates how the market-clearing approach builds on the
assumption that end users behave myopically, by truthfully solving (4.6) at each iteration.
However, a FlexRequest will involve intelligent agents and it will not take long before such
end users realize that they can benefit from engineering untruthful responses. The problem
is that if we relax the truthfulness assumption and consider strategic end users, market-
clearing methods no longer result in efficient allocations. Thus, it is very important to design
a market mechanism (MM) that is not only efficient, but also incentive compatible.

The Vickrey-Clarke-Groves (VCG) mechanism is the unique mechanism that is simultaneously
DISC (Dominant Strategy Incentive Compatible) and efficient15. The VCG payment rule is the
so called “Clarke pivot rule”, which calculates a reward 𝑟𝑖 equal to 𝑖’s “externality”. In other
words, it rewards each end user 𝑖 with an amount equal to the difference that 𝑖’s presence
makes in the social welfare of other end users. In the direct VCG mechanism, users are asked
to declare their local functions 𝑑𝑖(𝑞𝑖

𝑡) to the aggregator. Because of the Clarke pivot rule, it
is a dominant strategy for each end user to make a truthful declaration. Thus, the efficient
allocation that corresponds to the social welfare maximization problem can be calculated at
the aggregator’s side. In order to calculate the VCG rewards from Eq. (4.6), problem (4.4) is
solved |𝒩| + 1 times (one time with each end user in 𝒩 absent to calculate the payments,
plus one time with all end users present to calculate the allocation). The major drawback of
the direct VCG mechanism is the requirement that the end users disclose their discomfort
functions 𝑑𝑖(𝑞𝑖

𝑡) to the aggregator. This raises important issues such as a) Lack of privacy, in
the case where end users are reluctant to reveal local information, and b) Difficulty of
implementation, in cases where end users are unable to express their preferences in a closed
form function.

15 V. Krishna, "Auction Theory", New York: Academic, 2002.

50

In the next section, we propose a modification of Ausubel’s Clinching auction16, allowing for
a distributed implementation of VCG, which is designed to tackle these issues. In particular,
we opt for an iterative auction that:

 facilitates end users’ bids via auction queries, thus making the proposed architecture
more easily implementable in practice

 engages end users in the B2C flexibility market and allocates consumption reduction
gradually along the way, so that price discovery is facilitated on the end users’ side

 protects end user’s privacy via a properly designed communication protocol

4.4.1 Ausubel’s Clinching auction and the proposed Modified Clinching Auction (MCA)
algorithm

The Clinching Auction (CA) is a well-known ascending price auction that halts when demand
equals supply. However, in contrast to most auctions, allocation and rewards are not cleared
exclusively at the final iteration. Rather, the goods (consumption reduction in our context)
are progressively allocated as the auction proceeds and payments are also progressively
built, while the auction design guarantees that the final allocation and payments coincide
with the ones obtained through VCG. Thus, both allocation efficiency and incentive
compatibility are achieved, while the aforementioned privacy and implementation
drawbacks of the direct-VCG mechanism are effectively addressed.

In order for the Clinching Auction to work in our setting, first we need to reverse the price
trajectory. In the proposed Modified Clinching Auction (MCA), the aggregator begins with a

per-unit reward 𝜆 = 𝜆𝑚𝑎𝑥 and in each iteration 𝑘 the price 𝜆𝑘 is reduced by a small positive
number 𝜀. The size of 𝜀 adjusts the discretization level of MCA. By Eq. (3), reward 𝜆𝑚𝑎𝑥 is
𝑑𝑅𝑡(0)

𝑑𝛥𝐿𝑡 = 𝑎, which, as analyzed earlier, is the highest value possible given that 𝑅𝑡 is concave.

End users respond by bidding their preferred reduction 𝑞𝑖
�̃�(𝜆) for each 𝜆. We represent the

end user’s response at 𝜆 as the solution to the end user’s utility maximization problem (which
is formally defined in Eq. (4.6)).

The end user’s objective function is concave in 𝑞𝑖
𝑡 , since 𝜆 ∙ 𝑞𝑖

𝑡 is linearly increasing and

𝑑𝑖(𝑞𝑖
𝑡) is convex by Assumption 2. Also, the solution 𝑞𝑖

�̃� is increasing in 𝜆, which means that

the end user’s response 𝑞𝑖
�̃� gradually decreases as 𝜆 decreases. For the MCA, we relax

constraint (4b) to the inequality:

𝐷𝑡 ≥ ∑ 𝑞𝑖
𝑡

𝑖∈𝒩 (4.7)

Consider an arbitrary iteration 𝑘 of the MCA and let 𝐷𝑡(𝜆𝑘) denote the FlexBuyer’s desired
reduction for per-unit reward 𝜆𝑘 . The central idea of the MCA is the following: if there is a

set 𝒩𝒿 ⊂ 𝒩 for which we have:

16 L. M. Ausubel "An efficient ascending-bid auction for multiple objects”, in American Economic Review, vol 94,
no.5, pp, 1452–1475, 2004.

51

𝐷𝑡(𝜆𝑘) − ∑ (𝑞𝑗
�̃�(𝜆𝑘))𝑗∈𝒩𝒿 > 0 (4.8)

then we allocate a reduction equal to 𝜁𝑖
𝑘 = 𝐷𝑡(𝜆𝑘) − ∑ (𝑞𝑗

�̃�(𝜆𝑘))𝑗∈𝒩𝒿 to each end user 𝑖 ∉

𝒩𝒿 at a per-unit reward 𝜆𝑘 . We then say that end user 𝑖 “clinched” 𝜁𝑖
𝑘 units. The MCA

auction terminates when set 𝒩𝒿 that satisfies condition (4.8) and set 𝒩, are equal, that is,
constraint (4.7) is satisfied. After that, it allocates the remaining 𝐷𝑡(𝜆𝑘−1) proportionally to
the end users that bid in the second-to-last iteration.

The critical advantage of the Clinching auction is that it allocates different amounts of
flexibility units at different rewards, and the flexibility units that an end user clinches do not
depend on his/her own bid, but only on the other end users’ bids. The algorithm that
implements MCA is presented in the table below.

Table 6: The proposed Modified Clinching Auction (MCA) algorithm

1. Initialize 𝜆0 = 𝜆𝑚𝑎𝑥, 𝑞𝑖
𝑡(𝜆𝑚𝑎𝑥), 𝐷𝑡(𝜆𝑚𝑎𝑥), 𝑘 = 0

2. while 𝐷𝑡(𝜆𝑘) < ∑ (𝑞𝑖
�̃�(𝜆𝑘))𝑖∈𝒩

3. if there exists 𝒩𝒿: ∑ (𝑞𝑗
�̃�(𝜆𝑘))𝑗∈𝒩𝒿 < 𝐷𝑡(𝜆𝑘)

4. clinch units 𝜁𝑖
𝑘 = 𝐷𝑡(𝜆𝑘) − ∑ (𝑞𝑗

�̃�(𝜆𝑘))𝑗∈𝒩𝒿 for

all 𝑖 ∉ 𝒩𝒿 at per-unit reward 𝜆𝑘

5. else

6. set 𝜆𝑘+1 = 𝜆𝑘 − 𝜀 and 𝑘 = 𝑘 + 1

7. ask each end user a reduction query for 𝜆𝑘 and

 collect the responses 𝑞𝑖
𝑡(𝜆𝑘)

8. ask the FlexBuyer for the desired total

 reduction 𝐷𝑡(𝜆𝑘) at per-unit-reward 𝜆𝑘

9. End while

10. Clinch units

𝜁𝑖
𝑘 = (𝑞𝑖

𝑡(𝜆𝑘−1) − ∑ 𝜁𝑖
𝜉𝑘−1

𝜉=0) ∙
𝐷𝑡(𝜆𝑘−1)

∑ 𝑞𝑖
𝑡(𝜆𝑘−1)𝑖∈𝒩

 at per-unit reward (𝜆𝑘−1), for each 𝑖 ∈ 𝒩

We are now able to prove the optimality of MCA in terms of social welfare performance:

Theorem 1: The social welfare loss at the final allocation of MCA is within (𝜀2 + 𝜆𝑚𝑎𝑥 ∙ 𝜀)/2𝑏
of the maximum possible.

Proof: The value of 𝜆 at which 𝐷𝑡 = ∑ (𝑞𝑖
�̃�)𝑖∈𝒩 is denoted as 𝜆𝑚𝑐, which gives

𝐷𝑡(𝜆𝑚𝑐) = ∑ (𝑞𝑖
�̃�(𝜆𝑚𝑐))𝑖∈𝒩 (4.9)

Let 𝓀 denote the number of iterations until the auction halts, that is,

𝓀 = ⌈
𝜆𝑚𝑎𝑥−𝜆𝑚𝑐

𝜀
⌉, (4.10)

where ⌈∙⌉, denotes the rounding to the nearest larger integer. We have:

52

⌈
𝜆𝑚𝑎𝑥−𝜆𝑚𝑐

𝜀
⌉ ≤ 𝓀 ≤ 1 + ⌈

𝜆𝑚𝑎𝑥−𝜆𝑚𝑐

𝜀
⌉ (4.11)

After the last “clinchings” (cf. line 10 of the algorithm), we have efficiently allocated

𝐷𝑡(𝜆𝓀−1) reduction units to the end users. The remaining 𝐷𝑡(𝜆𝑚𝑐) − 𝐷𝑡(𝜆𝓀−1) are not

allocated and this causes the loss of welfare 𝑊𝑙𝑜𝑠𝑠 , which is depicted as the grey area in the

figure below, where the red line represents 𝐷𝑡(𝜆) and the blue line represents ∑ 𝑞𝑖
�̃�(𝜆)𝑖∈𝒩 .

Figure 11: 𝑫𝒕(𝝀) and ∑ (𝒒𝒊

�̃�(𝝀𝒌))𝒊∈𝓝 as a function of 𝝀

Since we remain agnostic of the closed form of ∑ (𝑞𝑖
�̃�(𝜆𝑘))𝑖∈𝒩 , we assume the worst case and

calculate an upper bound on the sum of the grey plus the yellow area of the figure above:

𝑊𝑙𝑜𝑠𝑠 ≤ 𝜆𝑚𝑐 (𝐷𝑡(𝜆𝑚𝑐) − 𝐷𝑡(𝜆𝓀−1)) +
1

2
(𝜆𝓀−1 − 𝜆𝑚𝑐) (𝐷𝑡(𝜆𝑚𝑐) − 𝐷𝑡(𝜆𝓀−1)).

By substituting 𝐷𝑡(𝜆) =
𝑎−𝜆

2𝑏
 from Eq. (3), we get:

𝑊𝑙𝑜𝑠𝑠 ≤
𝜆𝑚𝑐(𝜆𝓀−1−𝜆𝑚𝑐)

4𝑏
+

𝜆𝓀−1(𝜆𝓀−1−𝜆𝑚𝑐)

4𝑏
≤

(𝜆𝓀−1)
2

−(𝜆𝑚𝑐)2

4𝑏
 .

By further substituting 𝜆𝓀−1 = 𝜆𝑚𝑎𝑥 − 𝜀(𝓀 − 1) and also substituting 𝓀 from inequalities
(4.11), using the left inequality when 𝓀 appears with a minus sign and the right inequality
when it appears with a plus sign, we finally obtain:

𝑊𝑙𝑜𝑠𝑠 ≤
𝜀2+𝜆𝑚𝑎𝑥 ∙𝜀

2𝑏
 ,

completing thus the proof.

Since we cope with a real-time application, the trade-off between the market mechanism’s
optimality and its computational time is of special importance. The latter directly relates to
the price-step 𝜀 , which means that Theorem 1 gives a quantification of the trade-off

53

described. Thus, the aggregator can accurately predict and control the mechanism’s response
time by adjusting 𝜀, (e.g. in order to meet the balancing market’s time granularity), while
having a worst-case quantification of the efficiency loss.

In practice, for the relevant use cases of price-anticipating end users, the computational
complexity of the MCA is small, which allows for a very small choice of 𝜀. To emphasize this,
it is useful to state the following corollary to Theorem 1.

Corollary 1: for 𝜀 ≪ 1, the welfare loss grows linearly with 𝜀.

Because the MCA includes a price-sensitive response also at the operator’s side, we have to
verify that the properties of efficiency and incentive compatibility still hold. This is proved in
the following Propositions.

Proposition 1: Truthful bidding is a dominant strategy in MCA.

Proof: Fix an iteration 𝑘 and assume that user 𝑖 bids 𝑞𝑖,𝑓𝑎𝑙𝑠𝑒
𝑡 (𝜆𝑘) ≠ 𝑞𝑖

�̃�(𝜆𝑘) in that iteration.

From step 4 of MCA, we see that 𝜁𝑖
𝑘 does not depend on 𝑞𝑖

𝑡 but only on the other end users’

bids 𝑞𝑗
𝑡, 𝑗 ≠ 𝑖. Thus, end user 𝑖’s bid can affect 𝑖’s allocation only by changing the 𝜆 at which

the termination condition holds. This means that a false bid 𝑞𝑖,𝑓𝑎𝑙𝑠𝑒
𝑡 (𝜆𝑘) will make a

difference to 𝑖, only if 𝑘 is the last iteration. However, by definition of 𝑞𝑖
�̃�(𝜆𝑘) (see Eq. (6)),

any bid 𝑞𝑖,𝑓𝑎𝑙𝑠𝑒
𝑡 (𝜆𝑘) ≠ 𝑞𝑖

�̃�(𝜆𝑘) brings strictly lower utility to end user 𝑖 at any iteration 𝑘.

Thus, truthful bidding brings the highest utility to end user 𝑖.

Furthermore, the following properties of the VCG mechanism hold also for the MCA:
Proposition 2: MCA is individually rational, weakly budget-balanced, and achieves the
maximum revenue for the aggregator among all efficient mechanisms.

Proof: The MCA auction is welfare maximizing (by Theorem 1, for 𝜀 small enough) and DSIC
(by Proposition 1). Moreover, the class of VCG mechanisms is the unique class that
simultaneously achieves these two properties. Since MCA terminates with the VCG allocation
and payments, it inherits the property of individual rationality.

Regarding the weak budget balance property, it suffices to show that our setting exhibits the
no single-agent effect. An environment exhibits no single-agent effect if the aggregated utility
of 𝑛 − 1 users does not improve by adding a 𝑛th user to the system. This property holds in
single-sided auctions with monotonous preferences 17 , since dropping an end user only
reduces the competition for the remaining end users, thus making them better-off.

Moreover, the VCG market mechanism maximizes the auctioneer’s utility, which means that
the aggregator buys flexibility units from the end users at the lowest possible price (among
all efficient and individually rational market mechanisms).

17 Y. Shoham, K. Leyton-Brown, "Multiagent Systems", Cambridge University Press, 2009.

54

4.4.2 Privacy preserving distributed communication protocol

A major drawback of the direct VCG mechanism is that it requires each end user to know and
disclose his/her discomfort function to a central entity (i.e. the aggregator). The MCA auction
algorithm implements the VCG allocation and payments via an indirect market mechanism.
In this way, end users are only required to respond to a specific sequence of queries, instead
of being required to communicate their discomfort function. Thus, the mechanism does not
require this direct-revelation and can also work with each participant solving an optimization
problem in parallel, while still achieving the VCG outcome (and its nice properties). This
allows for a privacy-aware implementation of an efficient and truthful B2C flexibility market
architecture. In this subsection, we demonstrate how exactly the proposed (optimal and
incentive compatible) mechanism can be configured with a scalable and privacy-preserving
communication protocol. For this purpose, we exploit this related Kademlia work18, although
now that the mechanism is disengaged from the direct-revelation and central computation
of the typical VCG, different communication protocols can also be applied.

The proposed mechanism is implemented through the development of a distributed
communication protocol that preserves privacy (by doing all the necessary calculations
required by MCA in a distributed fashion) while simultaneously guaranteeing all MCA
objectives.

According to 1, the major requirements from distributed systems (with use cases in privacy
preserving through blockchain) are: i) scalability in terms of number of users that participate
in them (which according to 1 is directly related to the balanced distribution of the
load/calculation overhead among participating users) and ii) low delay in terms of the time
that is needed for the privacy-aware algorithm’s execution (i.e. MCA’s execution).

The proposed B2C flexibility market architecture exploits blockchain services 1, which are
based on Distributed Hash Tables (DHT) 3 technologies, in order to execute MCA in a
distributed fashion. In this context, end users do not inform the aggregator about their
answers to the MCA’s queries. Instead, these answers are sent only to a small subset of end
users in 𝑁, in order to execute the calculations of MCA in a distributed fashion.

Thus, the proposed architecture acts as a substrate that offers a privacy preserving service to
MCA through which participating end users cooperate in order to protect their personal data
(i.e., their discomfort functions 𝑑𝑖(∙)) from the aggregator. In order to achieve this, they use
a DHT 3, which is based on the scheme proposed by Kademlia 4. In Kademlia, each user (node)
is identified by a number (nodeID) that can be seen as a point in a specific virtual space. The
nodeIDs do not serve only as identification, but they are also used by the Kademlia algorithm
to store and locate/get values/data hashes (i.e., the answers to the FSP queries). This process
is realized through a peer-to-peer routing service (implemented in the network application
layer) that Kademlia offers. In order to achieve this, each piece of information is given as
input to a hash function, whose output belongs to the aforementioned virtual space. Each
node is responsible for a subset of this virtual space according to its nodeID. Furthermore,

18 P. Maymounkov, D. Mazières, "Kademlia: A Peer-to-Peer Information System Based on the XOR Metric" in:
Druschel P., Kaashoek F., Rowstron A. (eds) Peer-to-Peer Systems. IPTPS 2002. Lecture Notes in Computer
Science, vol 2429, 2002.

55

participating nodes create and dynamically maintain routing tables in a bottom-up organized
way. Thus, they can collectively reach any point of this virtual space, by exploiting their
routing tables, in order to store and get information from this distributed data base. Through
the exploitation of these functionalities, the distributed execution of MCA takes place
through the use of 4 in the three following steps:

1. Data insertion: At each iteration 𝑘 of MCA, each node 𝑖 stores its bid 𝑞𝑖
�̃�(𝜆𝑘) in another

random node 𝑤 through the use of the aforementioned DHT system. It is highlighted that 𝑤
is different for each 𝑖 and 𝑘 (as it is derived from the output of the hash function that
Kademlia uses), and in this way collusion of a relatively small number of users to acquire data,
will fail (which is a requirement that 5 sets).

2. Calculation of 𝜁𝑖
𝑘(𝜆𝑘): Kademlia organizes the participating nodes in a tree structure. The

proposed system exploits this structure in order to calculate the sum ∑ 𝑞𝑖
�̃�(𝜆𝑘)𝑖∈𝒩 that MCA

requires. To do so in a distributed way, node 𝑗 waits until all nodes with lower nodeID from
it inform 𝑗 on possible data values they have to send to 𝑗. This process continues recursively
until the node with the highest id acquires the desirable data and then it calculates the sum.

At this point, this node also requests and receives 𝐷𝑡(𝜆𝑘) from the aggregator and checks

the termination condition. If it doesn’t hold, j proceeds by broadcasting ∑ 𝑞𝑖
�̃�(𝜆𝑘)𝑖∈𝒩 and

𝐷𝑡(𝜆𝑘) to all nodes, using the Kademlia tree. Thus, each node 𝑗 calculates 𝜁𝑖
𝑘(𝜆𝑘) by

subtracting the 𝑞𝑖
�̃�(𝜆𝑘) value that is stored in it (which is not its own 𝑞𝑗

�̃�(𝜆𝑘) value, and it

doesn’t know whose it is).

3. Final allocation and payments calculation: at the next iteration 𝑘 + 1, a different instance

of Kademlia tree could be created, so that 𝜁𝑖
𝑘+1(𝜆𝑘+1) is stored at a new node 𝑔, other than

𝑗. Thus, even in the case that a node is malicious, data privacy is not compromised. The tuple

𝐴𝑖 = { ∑ 𝜁𝑖
𝜉(𝜆𝜉)𝑘

𝜉=1 , ∑ [𝜁𝑖
𝜉(𝜆𝜉) · 𝜆𝜉]𝑘

𝜉=1 }, containing the allocation and payments of user 𝑖

up until iteration 𝑘 , is passed from user 𝑗 to 𝑔 . At the final iteration, the tuples 𝐴𝑖 are
communicated to the aggregator. Note that the aggregator receives only the final allocation

and payments for each end user, i.e., only the sum of 𝜁𝑖
𝑘(𝜆𝑘) and not the intermediate values

𝜁𝑖
𝜉(𝜆𝜉). This means that the aggregator (and any other node for that matter) does not have

the data to estimate the entire local discomfort function 𝑑𝑖(∙) of end user 𝑖.

The analysis above assumes that the aggregator is honest-but-curious. By this, we mean that
the aggregator is curious to know the discomfort functions of end users, but is also honest
and will never attack the system in order to acquire them. In case of a malicious aggregator
(i.e. with no hesitations to break the law), more strict privacy assumptions are needed, but
this case is outside of FLEXGRID’s scope. The interested reader can refer to the recent
literature of privacy-preserving aggregation for the smart grid 6 7 8 9 10 11.

In this section, we present two detailed appliance models taken from the literature and then
use simulations to demonstrate the advantages of the MCA and verify its properties. We also
compare MCA with state-of-the-art approaches. Specifically, we compare it with the marginal
cost pricing method Error! Reference source not found. in terms of truthfulness and

56

aggregator’s profits and with the direct-revelation VCG method 12 in terms of scalability.
Simulations were run in Matlab R2018b.

4.5.1 Detailed electric appliance models

The first model is taken from Error! Reference source not found. and includes appliances
that control the temperature of an environment, such as HVAC units. The end user’s most

preferable temperature is denoted by parameter 𝑇𝑖
𝑝𝑟𝑒𝑓(𝑡) and was taken in our experiments

to be uniformly distributed in the interval [75F, 79F]. The actual room temperature, denoted

by 𝑇𝑖
𝑖𝑛(𝑡), evolves according to:

𝑇𝑖
𝑖𝑛(𝑡) = 𝑇𝑖

𝑖𝑛(𝑡 − 1) + 𝜂 ∙ [𝑇𝑜𝑢𝑡(𝑡) − 𝑇𝑖
𝑖𝑛(𝑡 − 1)] + 𝜃 ∙ (𝑝𝑖,𝐻𝑉𝐴𝐶

𝑡 − 𝑞𝑖,𝐻𝑉𝐴𝐶
𝑡), (4.12)

where 𝑝𝑖,𝐻𝑉𝐴𝐶
𝑡 is the end user’s measurable power consumption before the occurrence of a

FlexRequest and 𝑞𝑖,𝐻𝑉𝐴𝐶
𝑡 is the curtailment resulting from the FlexRequest. Clearly, we have:

𝑝𝑖,𝐻𝑉𝐴𝐶
𝑡 − 𝑞𝑖,𝐻𝑉𝐴𝐶

𝑡 ≥ 0, (4.13)

and we also have the operational constraint:

𝑝𝑖,𝐻𝑉𝐴𝐶
𝑡 ≤ �̂�𝑖,𝐻𝑉𝐴𝐶

𝑡 . (4.14)

In the experiments, �̂�𝑖,𝐸𝑉
𝑡 was set to 5 kW. We considered end users living in the same

geographical location, hence the outdoors temperature 𝑇𝑜𝑢𝑡(𝑡) for the whole day was the
same for all end users and represented a typical summer day in Athens, Greece. Parameters
𝜂 and 𝜃 where set to 0.9 and 3, respectively. The user’s discomfort at timeslot 𝑡 for such end
users (appliances) was defined as the square difference between actual and desired
temperatures:

𝑑𝑖
𝑡𝑒𝑚𝑝(𝑞𝑖

𝑡) = 𝜔𝑖,𝐻𝑉𝐴𝐶
𝑡𝑒𝑚𝑝

(𝑇𝑖
𝑖𝑛(𝑡) − 𝑇𝑖

𝑝𝑟𝑒𝑓(𝑡))
2

, (4.15)

where parameter 𝜔𝑖,𝐻𝑉𝐴𝐶
𝑡𝑒𝑚𝑝

 expresses the end user’s inelasticity in timeslot 𝑡 and was

randomly selected in the range [0.10, 0.50].

The second appliance model represents temporally flexible loads (e.g., EVs) and is taken from
14. The EV is plugged-in at timeslot 𝛾𝑖, where 𝛾𝑖 is uniformly selected in the interval [3,9], for
one third of the end users and in the interval [14, 20] for the remaining two thirds. Each EV
charges with a charging power 𝑝𝑖,𝐸𝑉

𝑡 and has a total charging demand of 𝐸𝑖,𝐸𝑉 kWhs, where

𝐸𝑖,𝐸𝑉 was uniformly selected in the interval [6, 36]. The end user wants the EV to be charged

as soon as possible and any delay would bring discomfort. This model accurately represents
en-route charging (where an end user stops to charge the EV in a charging station on his/her
way to his/her destination). The desired charging duration, denoted as 𝛿𝑖, was set to 𝛿𝑖 = 3

57

timeslots for all end users. The upper limit on charging power, denoted by �̂�𝑖,𝐸𝑉
𝑡 , was selected

as �̂�𝑖,𝐸𝑉
𝑡 =

𝐸𝑖,𝐸𝑉

𝛿𝑖
. That is, if FlexRequests occurred, each end user would charge his/her EV in 3

(consequent) timeslots. An EV operational constraint is given as:

𝑝𝑖,𝐸𝑉
𝑡 ≤ �̂�𝑖,𝐸𝑉

𝑡 . (4.16)

The EV cannot be charged before arrival:

𝑝𝑖,𝐸𝑉
𝑡 = 0, 𝑡 < 𝛾𝑖 , (4.17)

and must be fully charged before leaving:

∑ 𝑝𝑖,𝐸𝑉
𝑡

𝑡∈𝒯 ≥ 𝐸𝑖,𝐸𝑉 . (4.18)

During a FlexRequest, an end user may choose to curtail 𝑞𝑖,𝐸𝑉

𝑡 units from EV charging and

compensate for them by charging the EV in a later timeslot. This delayed charging (for
timeslots after 𝛾𝑖 + 𝛿𝑖 − 1), comes with a discomfort defined as:

𝑑𝑖,𝐸𝑉
𝑤𝑎𝑖𝑡(𝑞𝑖 𝐸𝑉

𝑡) = ∑ [(𝜔𝑖,𝐸𝑉
𝑤𝑎𝑖𝑡)

𝑡−𝛾𝑖−𝛿𝑖+1
∙ 𝑝𝑖,𝐸𝑉

𝑡]𝑡∈{𝒯|𝑡≥𝛾𝑖+𝛿𝑖} , (4.19)

where parameter 𝜔𝑖,𝐸𝑉
𝑤𝑎𝑖𝑡 expresses the end user’s inelasticity for delayed charging and was

uniformly selected in the range [1, 1.5].

4.5.2 Performance evaluation results

Over a time horizon of 24 timeslots, with a duration of 15 minutes for each timeslot and for
a setting of 50 end users, we simulated a FlexRequest in timeslot 17 (where there was a peak
in the aggregated energy consumption). The parameters of the reward function were set to
𝑎 = 3 and 𝑏 = 0.05. We used step 𝜀 = 10−3 in the MCA algorithm (cf. Table above). The
figure below (i.e. left hand side) depicts the aggregated consumption along all 24 timeslots.
As the figure shows, there is a consumption curtailment in the timeslot where the DR-event
takes place and a consequent shift of consumption to a later timeslot (timeslot 20). Note that
it could not be shifted to timeslots 18 or 19, because constraints (4.14) and (4.16) were
already tight for these timeslots.

Next, we investigate the effect that cheating has on the aggregator’s profits, denoted by

𝛱𝑡𝑟𝑢𝑡ℎ𝑓𝑢𝑙 for the case where end users act truthfully and by 𝛱𝑐ℎ𝑒𝑎𝑡 for the case where they

act according to what brings them the highest utility. We plot the ratio 𝛱𝑐ℎ𝑒𝑎𝑡/𝛱𝑡𝑟𝑢𝑡ℎ𝑓𝑢𝑙 for

different values of end users’ elasticities {𝜔𝑖,𝐻𝑉𝐴𝐶
𝑡𝑒𝑚𝑝

, 𝜔𝑖,𝐸𝑉
𝑤𝑎𝑖𝑡}.

To do so, for each experiment, we multiply the end users’ elasticity parameters by a positive
factor 𝜔𝑓 . Higher values of 𝜔𝑓 indicate more inelastic end users. The right hand side of the

figure below shows that the ratio 𝛱𝑐ℎ𝑒𝑎𝑡/𝛱𝑡𝑟𝑢𝑡ℎ𝑓𝑢𝑙 is maximized and is equal to 1 for the

58

MCA, verifying our theoretical results. We also observe that for the marginal cost pricing
method 12, the aggregator’s profit loss due to untruthfulness rises with 𝜔𝑓 (i.e., when end

users are less elastic), indicating that our scheme’s truthfulness property becomes more
important in markets where participants are not particularly flexible.

Figure 12: (a) Aggregated consumption as a function of time with and without the FlexRequest.

(b) Ratio
𝜫𝒄𝒉𝒆𝒂𝒕

𝜫𝒕𝒓𝒖𝒕𝒉𝒇𝒖𝒍 as a function of 𝝎𝒇

Next, we verify Corollary 1. We simulated the FlexRequest for different values of the step

parameter 𝜀, measuring the proportional welfare loss: 𝑊𝑙𝑜𝑠𝑠 =
𝑊𝑜𝑝𝑡−𝑊𝑀𝐶𝐴

𝑊𝑜𝑝𝑡
, where 𝑊𝑜𝑝𝑡 is

the optimal welfare and 𝑊𝑀𝐶𝐴 is the welfare achieved by the MCA. The simulation results in
the figure below verify Corollary 1, which states that for small values of 𝜀, the upper bound
on the welfare loss grows linearly with 𝜀.

Figure 13: Proportional welfare loss of MCA as a function of the price step 𝜺

As a next step, we compare MCA to the direct-revelation VCG method (proposed in 14), in
terms of scalability with respect to the number of end users. Simulations have been carried

59

out on an Intel Core i7 4GHz, 64-bit, 16GB RAM, computer. As depicted in the figure below,
the computational time of the method in 14 rises very quickly, which makes it impractical for
real-time applications. In contrast, MCA scales remarkably well to any number of end users,
since the algorithm’s convergence time does not depend on the size of set 𝒩. In order to
confirm the scalability properties of our privacy preserving protocol presented in the
previous section, we depict in the right hand side of the figure below the latency introduced
by it. As it is known theoretically, in DHT technologies, this latency increases logarithmically
with the number of end users. This is verified in the same figure, which testifies their
outstanding scalability properties. In comparison to the timeslot duration (15 minutes, which
is a typical granularity for measurements and clearing of the existing balancing markets in
Europe), these results show that the proposed system is both scalable and efficient.

Figure 14: (a) Convergence time of MCA and VCG, as a function of the number of users. (b) Delay

(latency) of privacy preserving protocol as a function of the number of participating users

Finally, we discuss the property of incentive compatibility. We thus verify the theoretical
result of Proposition 1 for end user models that satisfy the Assumptions and also
experimentally study incentive compatibility in the case of inelastic appliances (where our
Assumptions are not satisfied). Our results are compared against the typical Marginal Cost
Pricing Method 12. We will now verify the truthfulness property via simulations. For the case
of elastic end users, we assume that one end user misinterprets his/her discomfort by

manipulating his/her 𝜔𝑖,𝐸𝑉
𝑤𝑎𝑖𝑡 , while all other end users act truthfully. The untruthful end user

is indexed by 𝑐ℎ (for cheater). The cheater’s utility 𝑈𝑐ℎ is maximized for a certain choice of
𝜔𝑐ℎ. The figure below shows 𝑈𝑐ℎ as a function of 𝜔𝑐ℎ.

60

Figure 15: Focal end user's utility as a function of his/her choice of 𝝎𝒄𝒉

The black dotted line represents the focal user’s actual (real) 𝜔𝑖,𝐸𝑉
𝑤𝑎𝑖𝑡 , denoted as 𝜔𝑟𝑒𝑎𝑙 . For

the MCA, the end user’s optimal choice of 𝜔 (the one where 𝑈𝑐ℎ is maximized) coincides with
𝜔𝑟𝑒𝑎𝑙, which means that the end user’s best strategy is to act truthfully. A similar statement
cannot be made for the marginal cost pricing method.

The result of Figure 15 was expected, since it was already proven in Proposition 1. Although
we cannot state a similarly strong theoretical guarantee for inelastic end users, nevertheless
our simulations show similar results. We study the case where an appliance is inelastic, in the
sense that it can only be turned on or off, but its consumption cannot take intermediate
values:

𝑝𝑖,𝑖𝑛𝑒𝑙
𝑡 ∈ {0, �̂�𝑖,𝑖𝑛𝑒𝑙

𝑡 }, (4.20)

and thus,
𝑞𝑖,𝑖𝑛𝑒𝑙

𝑡 ∈ {0, �̂�𝑖,𝑖𝑛𝑒𝑙
𝑡 }. (4.21)

The end user’s discomfort for turning his/her load off, is denoted by 𝑑𝑖,𝑖𝑛𝑒𝑙
𝑜𝑓𝑓

. Thus, the end

user’s discomfort function takes the form:

𝑑𝑖,𝑖𝑛𝑒𝑙(𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡) = {

0, 𝑓𝑜𝑟 𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡 = 0

𝑑𝑖,𝑖𝑛𝑒𝑙
𝑜𝑓𝑓

, 𝑓𝑜𝑟 𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡 > 0

. (4.22)

This kind of appliances violate 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 2. In fact, in mechanism design terms, the form
of the end user’s valuation for these appliances exhibits complementarity (the end user can
either curtail all �̂�𝑖,𝑖𝑛𝑒𝑙

𝑡 KWhs, but he/she cannot make use of an allocation that is smaller than

�̂�𝑖,𝑖𝑛𝑒𝑙
𝑡). It has been proven that in the presence of such complementarities that there is no

tractable iterative auction that can achieve incentive compatibility 15. The clinching auction
for example, could end up allocating any reduction between 0 and �̂�𝑖,𝑖𝑛𝑒𝑙

𝑡 to the end user. In

what follows, we present an extension of the MCA algorithm that accommodates inelastic
end users and evaluate it via simulations. Although we can no longer theoretically guarantee

61

the property of incentive compatibility, nevertheless simulation results show that, in
practice, truthful bidding is still the best choice for each end user.

Let 𝐼 denote the set of inelastic end users. The first step is to run the MCA algorithm as

described in Table 6. Then, we grant the MCA allocations 𝜁𝑖
𝑘, ∀𝑘 only to elastic end users 𝑖 ∉

𝐼. The remaining reduction ∑ ∑ 𝜁𝑖
𝑘

𝑖∈𝐼
𝓀
𝑘=1 , will be reallocated amongst the inelastic end users,

in a way that respects constraints (4.21). This is actually an instance of the knapsack problem.
In order not to compromise the computational time guarantees of our real-time auction, we
use a simple heuristic to solve it. Inelastic end users are sorted in increasing order of their so

called “bang-for-buck” i.e. their
𝑑𝑖,𝑖𝑛𝑒𝑙

𝑜𝑓𝑓

𝑝𝑖,𝑖𝑛𝑒𝑙
𝑡 . Finally, we allocate 𝑞𝑖,𝑖𝑛𝑒𝑙

𝑡 = �̂�𝑖,𝑖𝑛𝑒𝑙
𝑡 to user 𝑖 ∈ 𝐼, in

increasing order of the sorted list, until ∑ 𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡

𝑖∈𝐼 ≥ ∑ ∑ 𝜁𝑖
𝑘

𝑖∈𝐼
𝓀
𝑘=1 . The procedure is

depicted in Table 7.

Table 7: The Extended MCA algorithm

1. RUN THE MCA ALGORITHM (Table 6)

2. SET 𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡 = 0, ∀𝑖 ∈ 𝐼

3. SORT USERS 𝑖 ∈ 𝐼, in increasing order of 𝑑𝑖,𝑖𝑛𝑒𝑙
𝑜𝑓𝑓

/ �̂�𝑖,𝑖𝑛𝑒𝑙
𝑡

4. Set 𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡 = �̂�𝑖,𝑖𝑛𝑒𝑙

𝑡 for user 𝑖 ∈ 𝐼, in increasing order of the sorted list, until

∑ 𝑞𝑖,𝑖𝑛𝑒𝑙
𝑡

𝑖∈𝐼 ≥ ∑ ∑ 𝜁𝑖
𝑘

𝑖∈𝐼
𝜉
𝑘=1

Figure 16: Users’ Utility as a function of user’s interpreted valuation

62

In Figure 16, we present indicative results (for various values of �̂�𝑖,𝑖𝑛𝑒𝑙
𝑡 and 𝑑𝑖,𝑖𝑛𝑒𝑙

𝑜𝑓𝑓
), regarding

the truthfulness of an inelastic end user’s strategy, when participating in the extended MCA.
More specifically, we tested how well an end user does (in terms of utility 𝑈𝑖, see Eq. 4.1), by
interpreting his/her discomfort with various (untruthful) values. The end user’s actual
discomfort for curtailing �̂�𝑖,𝑖𝑛𝑒𝑙

𝑡 units is marked with a vertical dotted line. From the figure, it

becomes clear that the end user already achieves his/her maximum possible utility, by
truthfully interpreting his/her discomfort and has nothing to gain by playing untruthfully. This
is, again, in contrast to the marginal cost pricing approach 12.

Within M19-M26, we will elaborate on the UCS 4.2 work in order to deal in more depth with
algorithmic complexity and scalability problem. Our research findings indicate the need to
deal with the scalability problem, which becomes very difficult to solve when we consider
many FlexRequests published by the FLEXGRID ATP, a large portfolio of end users (i.e. at a
scale of several hundreds of end users or even millions19), more complex (and thus realistic)
FlexAsset models and more stringent real-time constraints imposed by the B2C flexibility
market.

In order to cope with these research challenges, our ongoing work focuses on combining the
existing work on B2C flexibility market with an optimal cloud resource allocation algorithm.
The cloud resource allocation algorithm will be able to service multiple FlexRequests (e.g. in
multiple distribution networks), and minimize the cost of computational resources, while
respecting the execution time constraints of each FlexRequest. This will motivate towards
cost-efficient and competitive B2C flexibility market as a service.

Another research task, which is also related with respective WP6 work is to integrate the
proposed Behavioral Real Time Pricing (B-RTP) scheme into the Automated Flexibility
Aggregation Toolkit (AFAT) and FLEXGRID ATP. Thus, the aggregator user will be able to
exhaustively run offline “what-if” simulations to decide about personalized FlexContracts
that best fit with each end energy prosumer's needs and energy prosumption profile.

19 Note that each end user may have several flexible electric appliances (FlexAssets), so the number of
participating entities increases even more.

63

5 S/W integration in AFAT and FLEXGRID ATP

The Automated Flexibility Aggregation Toolkit (AFAT) has been designed in a way that can be
commercially exploitable as a standalone S/W toolkit, which can be integrated as a S/W
“plug-in” in other larger S/W platforms developed by an energy aggregator company in the
future. Within the FLEXGRID’s context, AFAT will be integrated in the FLEXGRID S/W platform
(ATP) and its operation will be tested via extensive lab experimentations and pilot tests within
WP6 and WP7.

So far, in FLEXGRID, we have done the following work with respect to the AFAT:

 We have developed a first version of the AFAT’s functionalities. In other words, we
have developed and tested the first version of the research algorithms that will be
running at the AFAT’s backend. The initial research results are extensively analyzed
and demonstrated in chapters 2-4 of the current document.

 AFAT’s data modelling work has been finalized and is provided in D6.120 (M18). In
particular, for each one of the three main algorithms to be integrated in AFAT, we
have designed the APIs for the interconnection between the: i) AFAT’s backend
services, ii) AFAT’s frontend services, and iii) central FLEXGRID database.

 As part of WP8 business modeling work, we have identified the AFAT’s Key Exploitable
Results (KERs) and have already made a qualitative business analysis regarding the
ways that the proposed functionalities can be further exploited in the commercial
aggregator’s business. More details are provided in D8.2 (M18).

From M19 onwards, we will continue the WP3 research and will start integrating the first
version of the algorithmic solutions in the AFAT. Then, we will extensively test and validate
our algorithms in FLEXGRID ATP at TRL 5. In the figure below, the progress of AFAT’s
development is depicted throughout the whole project’s lifetime as follows:

 Within WP3, we conduct high-quality scientific research work by developing
advanced mathematical models and algorithms beyond state-of-the-art and publish
them in high-quality scientific journals and conferences (TRL 3).

 After the extensive testing and validation of the proposed algorithms at TRL 3, the
next step is the deployment of REST API servers and REST API client for the
integration of AFAT’s frontend and backend services.

 The next step is the testing and validation of the AFAT algorithms via the use of
FLEXGRID ATP at TRL 5 (WP6).

 Finally, within WP7 work, we will conduct small-scale real-life pilot tests of AFAT’s
functionalities in the UCY pilot (TRL 6).

Figure 17: Progress of AFAT’s development and respective technology readiness levels (TRLs)

20 https://flexgrid-project.eu/deliverables.html

https://flexgrid-project.eu/deliverables.html

64

The aggregator user will be able to use a bunch of services from the FLEXGRID ATP. Once
logged in the ATP via a single sign-in authentication process, the aggregator user will be re-
directed to the AFAT’s frontend services. The Graphical User Intefaces (GUIs) will be based
on the existing WISECOOP application, which has been developed with H2020 WISEGRID
project21. The goal of FLEXGRID is to use WISECOOP as a S/W substrate based on which the
FLEXGRID’s WP3 algorithms will be integrated.

AFAT’s frontend (GUI) will be comprised of three basic tabs, namely:

 Manage a FlexRequest

 Create a FlexOffer

 Manage a B2C flexibility market

By using the “Manage a FlexRequest” tab, the aggregator user will be able to visualize the
profit of accepting a FlexRequest and the “consequences”/remaining flexibility of its portfolio
after the positive response. The goal is to deviate from the baseline only by the amount of
energy in FlexRequests, which were accepted by the aggregator. Two modes of operation will
be considered as follows:

 Online operation: A new FlexRequest-Dispatch is published in real-time by a
FlexBuyer in the ATP. The aggregator is instantly informed and then will run the UCS
4.1 algorithm (cf. chapter 2) to decide the updated dispatch per FlexAsset / end user
that belongs to its portfolio.

 Offline operation: The aggregator performs “what-if” simulation scenarios (i.e.
different configurations of FlexContracts, expansion/modification of portfolio,
different sequence of FlexRequests, etc.) to determine strategies for optimal
response to future FlexRequests. For a sequence of multiple FlexRequests assumed
in a given “what-if” simulation scenario configured by the aggregator user, the
algorithm will run iteratively.

As of the “Create a FlexOffer” tab, the aggregator user will be able to visualize a FlexOffer
and then submit (post) it in FLEXGRID ATP at a specific time instance regarding its
participation in the DLFM market. Then, the FMO user will also be able to visualize this
FlexOffer as well as the DSO (i.e. FlexBuyer). If this FlexOffer is not accepted in DLFM, it may
be forwarded to the TSO’s balancing market. Two modes of operation will be considered as
follows:

 Online operation is when the aggregator user wants to create a FlexOffer in real-time
(in order to submit it in the ATP) based on the current availability of FlexAssets (cf.
FlexContract per FlexAsset that denotes the available reserve capacity).

 Offline operation is when the aggregator user wants to run “what-if” scenarios to see
whether it is more beneficial to participate in the existing TN-level balancing market
or DN-level balancing market (i.e. DLFM).

Finally, regarding the “Manage a B2C flexibility market” tab, the aggregator user will be able
to visualize in AFAT frontend (i.e. ATP) several KPIs that make him/her recommend a new

21 See more technical details about WISECOOP application here: https://www.wisegrid.eu/project-tools

https://www.wisegrid.eu/project-tools

65

(more beneficial) FlexContract to a set of end energy prosumers. Only offline operation is
considered as follows :

 Offline operation: The aggregator user runs various “what-if” simulation scenarios via
running an advanced retail pricing algorithm (Behavioral Real Time Pricing – B-RTP) to
identify how it can recommend a new (more beneficial) FlexContract to a set of end
energy prosumers. Only the aggregator user will be able to visualize the results.

For each one of the three algorithms, there will
be a tab in the AFAT frontend. Once the aggregator user clicks on one tab, s/he will be able
to configure/customize/fill in the input parameters that are needed for each algorithm to be
able to run. Once the aggregator user clicks on the “Run algorithm” button, step 1 process
that is shown in the figure below, will be followed. More specifically, the API client that
resides at the AFAT frontend will automatically gather all input parameters and will send
them to the API server that resides at the AFAT backend.

After the AFAT backend receives the input parameters, the next step is to request for the
required input data from the FLEXGRID central database (DB). More specifically, an API client
that resides at AFAT backend requests for input data from an API server residing at the central
DB. In step 3, the input data is retrieved, and now the algorithm can be executed.

Once the algorithm produces the results, these output parameters will be automatically
gathered by the AFAT-ATP API and will be sent to the AFAT frontend so that the aggregator
user can visualize the results in a comprehensive and user-friendly manner. The final step
(i.e. step 5) is for the aggregator user to understand the results and if s/he is interested in
further elaborating them, then s/he can optionally select to store them in the central DB in
order to be able to retrieve, visualize and possibly compare them with other results in the
future.

66

Figure 18: Sequence diagram for the S/W integration of WP3 research algorithms in AFAT and

FLEXGRID ATP

67

6 Conclusions and next steps

In the following months, WP3 partners will progress the current research work presented in
this report and will provide the final research results in Month 26.

Regarding UCS 4.1 work, UCY will follow the research plan described in section 2.6. As of UCS
4.2 and 4.3 work, ICCS will follow the research plan described in sections 4.6 and 3.6
respectively.

In the figure below, the timeline schedule of WP3 is illustrated. Milestone #5 has been
achieved with this deliverable, while one more milestone remains to be accomplished for
month #26 with the submission of D3.3.

Figure 19: Current FLEXGRID project’s WP3 timeline schedule (MS 5 has been accomplished)

68

References

1 Felber, P., Kropf, P., Schiller, E. and Serbu, S., 2014. “Survey on Load Balancing in Peer-to-
Peer Distributed Hash Tables”, IEEE Communications Surveys and Tutorials, vol. 16 no.1,
pp.473-492.

2 G. Zyskind, O. Nathan and A. Pentland, "Decentralizing Privacy: Using Blockchain to
Protect Personal Data," 2015 IEEE Security and Privacy Workshops, San Jose, CA, 2015,
pp. 180-184.

3 Xylomenos, G., Ververidis, C.N., Siris, V.A., Fotiou, N., Tsilopoulos, C., Vasilakos, X.,
Katsaros, K.V. and Polyzos, G.C., 2014. A survey of information-centric networking
research. IEEE Communications Surveys and Tutorials, vol. 16 no. 2, pp.1024-1049.

4 P. Maymounkov, D. Mazières, "Kademlia: A Peer-to-Peer Information System Based on
the XOR Metric" in: Druschel P., Kaashoek F., Rowstron A. (eds) Peer-to-Peer Systems.
IPTPS 2002. Lecture Notes in Computer Science, vol 2429, 2002.

5 Z. Baharlouei and M. Hashemi, "Efficiency-Fairness Trade-off in Privacy-Preserving
Autonomous Demand Side Management," in IEEE Transactions on Smart Grid, vol. 5, no.
2, pp. 799-808, March 2014.

6 H. J. Jo, I. S. Kim and D. H. Lee, "Efficient and Privacy-Preserving Metering Protocols for
Smart Grid Systems," in IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1732-1742,
May 2016.

7 F. Knirsch, G. Eibl and D. Engel, "Error-Resilient Masking Approaches for Privacy
Preserving Data Aggregation," in IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3351-
3361, July 2018.

8 P. Gope and B. Sikdar, "Lightweight and Privacy-Friendly Spatial Data Aggregation for
Secure Power Supply and Demand Management in Smart Grids," in IEEE Transactions
on Information Forensics and Security, vol. 14, no. 6, pp. 1554-1566, June 2019.

9 D. Egarter, C. Prokop and W. Elmenreich, "Load hiding of household's power demand,"
2014 IEEE International Conference on Smart Grid Communications (SmartGridComm),
Venice, 2014, pp. 854-859.

10 A. Awad, P. Bazan and R. German, "Privacy Aware Demand Response and Smart
Metering," 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow,
2015, pp. 1-5.

11 H. Li, X. Lin, H. Yang, X. Liang, R. Lu and X. Shen, "EPPDR: An Efficient Privacy-Preserving
Demand Response Scheme with Adaptive Key Evolution in Smart Grid," in IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 8, pp. 2053-2064, Aug.
2014.

12 P. Samadi, A. H. Mohsenian-Rad, R. Schober, V. W. S. Wong and J. Jatskevich, "Optimal
Real-Time Pricing Algorithm Based on Utility Maximization for Smart Grid," 2010 First
IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, 2010,
pp. 415-420.

13 N. Yaagoubi and H. T. Mouftah, "User-Aware Game Theoretic Approach for Demand
Management," in IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 716-725, March
2015.

14 P. Samadi, A. H. Mohsenian-Rad, R. Schober, V. W. S. Wong, "Advanced demand side
management for the future smart grid using mechanism design", IEEE Trans. Smart Grid,
vol. 3, no. 3, pp. 1170-1180, Sep. 2012.

69

15 F. Gul and E. Stacchetti. Walrasian equilibrium with gross substitutes. Journal of Economic
Theory, vol 87 no 1, pp. 95–124, 1999.

16 T. Li, S. H. Low, and A. Wierman, “Real-time flexibility feedback for closed-loop aggregator
and system operator coordination,” arXiv2006.13814, 2020.

17 Tin Kam Ho, “Random decision forests,” in Proceedings of 3rd International Conference
on Document Analysis and Recognition, vol. 1, 1995, pp. 278–282 vol.1.

	Table of Contents
	List of Figures and Tables
	1.1 List of Figures
	1.2 List of Tables

	Document History
	Executive Summary
	1 Introduction
	1.3 Description of High-Level Use Case #4 and interaction with the FLEXGRID system as a whole
	1.2 Summary of state-of-the-art solutions for the aggregator’s business challenges
	1.3 Summary of research problems and FLEXGRID’s research innovation
	1.4 Summary of FLEXGRID’s research impact on today and future aggregator’s business

	2 An aggregator efficiently responds to FlexRequests made by TSO/DSO/BRPs by optimally orchestrating its aggregated flexibility portfolio of end energy prosumers
	2.1 Problem statement, related state-of-the-art and FLEXGRID research contributions
	2.2 System model
	2.3 Problem Formulation
	2.3.1 FlexRequest
	2.3.2 FlexContract/End-user compensation
	2.3.3 FlexAssets
	2.3.4 Objective Function of the Aggregator

	2.4 Algorithmic solution
	2.5 Simulation setup and performance evaluation results
	2.5.1 Simulation setup
	2.5.2 Performance evaluation and KPIs

	2.6 Next research steps for M19-M26 period

	3 An aggregator maximizes its revenues by dynamically orchestrating distributed FlexAssets from its end users to optimally participate in near-real-time energy markets
	3.1 Problem statement, related state-of-the-art and FLEXGRID research contributions
	3.2 System model
	3.3 Problem Formulation
	3.4 Machine Learning (ML) based algorithmic solution
	3.4.1 Deep Neural Networks (DNNs)
	3.4.2 Random Forests (RF)

	3.5 Simulation setup and performance evaluation results
	3.5.1 Simulation setup and evaluation framework
	3.5.1.1 Wholesale Energy Market Model (WEMM)
	3.5.1.2 Machine learning methods

	3.5.2 Performance evaluation results
	In the next subsections, we perform various experiments and simulations with respect to various Key Performance Indicators (KPIs):
	3.5.2.1 Comparison of the proposed ML methods
	3.5.2.2 Aggregator’s profits
	3.5.2.3 Imbalances
	3.5.2.4 Flexibility aggregation
	3.5.2.5 FlexOffer behavior

	3.6 Next research steps for the M19-M26 period

	4 An aggregator operates an ad-hoc B2C flexibility market with its end energy prosumers by employing advanced pricing models and auction-based mechanisms
	4.1 Problem statement, related state-of-the-art and FLEXGRID research contributions
	4.2 System model
	4.2.1 End user’s energy consumption model and utility function
	4.2.2 FlexRequest and the aggregator’s problem

	4.3 Problem Formulation
	4.4 Proposed algorithmic solution
	4.4.1 Ausubel’s Clinching auction and the proposed Modified Clinching Auction (MCA) algorithm
	4.4.2 Privacy preserving distributed communication protocol

	4.5 Simulation setup and performance evaluation results
	4.5.1 Detailed electric appliance models
	4.5.2 Performance evaluation results

	4.6 Next research steps for the M19-M26 period

	5 S/W integration in AFAT and FLEXGRID ATP
	5.1 Summary of AFAT’s functionalities and S/W development
	5.2 AFAT’s frontend services
	5.3 AFAT’s backend services and integration in FLEXGRID ATP

	6 Conclusions and next steps
	References

