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Executive Summary 
This report is an official deliverable of H2020-GA-863876 FLEXGRID project dealing with the 
detailed architecture design of all WP4 subsystems and their interactions as well as the 
respective technical specifications emphasizing on the detailed description of WP4 research 
problems. The focus of this document is FLEXGRID High Level Use Case #2 (HLUC_02), which 
primarily focuses on the profit-oriented Energy Service Provider (ESP) and the services it may 
obtain using the FLEXGRID ATP platform, more specifically the FlexSupplier’s Toolkit (FST). 

 

Six Use Case Scenarios (UCSs) are presented for the development of innovative market 
operation models and business models that offer to ESPs the easy planning and operation of 
their assets according to the innovative FLEXGRID energy market architecture. The respective 
algorithms (i.e. algorithms from UCSs 2.1, 2.2 and 2.3) will be integrated in a S/W toolkit 
entitled FlexSupplier’s Toolkit (FST), which will dynamically interact with the core FLEXGRID 
ATP. 

 

Chapter 1 brings an introduction to this report summarizing the scope and purpose of the 
document.  More specifically, it provides a description of High Level Use Case #2 (HLUC_02) 
and the interaction with the FLEXGRID system. It summarizes the research innovations, the 
research impact on energy service provider’s (ESP) business models, including policy 
recommendations and lessons learnt.  

 

Chapters 2-7 follow a similar structure and extend the work presented in the respective 
chapters in previous D4.1 (delivered in M12) and D4.2 (delivered bin M18). They are 
structured in such a manner to encompass the following points: 

 A summary of FLEXGRID research results so far 

 System model 

 Problem formulation 

 Algorithmic solution 

 Simulation setup and performance evaluation results 

 Concluding remarks and lessons learned 

 

Chapter 2 deals with the topic of advanced forecasting services both to predict market prices 
and FlexAssets’ state in the future. The main contributions are related to the: i) PV generation 
forecasting and ii) market price forecasting. Topics such as (i) have more importance than 
ever as the stability of the electricity grid faces new challenges due to the variable and 
intermittent nature of generated power that is dependent on the weather conditions. 
Combining the WP3 and WP4 contributions, a methodology for both day-ahead and intra-
day PV generation is proposed together with a model based on the Artificial Neural Network 
(ANN). Market price forecasting functionality, as part of the HLUC04_UCS04 is provided to 
the ESP and aggregator actors and is based on the Extreme Learning Machine (ELM) 
methodology. 

 

In Chapter 3, the research problem of the FLEXGRID UCS2.1 is presented. The emphasis is on 
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deriving optimal scheduling algorithms for the profit-oriented ESP user. In a modern 
electricity system, the ESP may participate in many various markets and have many 
FlexAssets under different contractual arrangements. Sub-optimal business strategies may 
result in loss of the market share for the respective ESP and consequently less profit. Hence, 
OPEX minimization problem based on the proposed optimal scheduling model and algorithm 
may boost ESP’s profits and create comparative advantage over the competition. Moreover, 
tools that enable business sustainability in the high RES penetration scenarios may even 
accelerate the whole energy transition process. As part of the whole FLEXGRID project 
concept, a novel Distribution Level Flexibility Market (DLFM) is considered and incorporated 
in the model. More specifically, Reactive and Proactive-DLFM architectures are considered, 
as the first version may be easily added to the current market paradigm without any major 
modifications, while the latter offers more incentivization in terms of more monetary 
benefits for the ESP. 

 

Chapter 4 presents the work performed under the FLEXGRID UCS 2.2. The primary objective 
is to utilize a novel siting and sizing algorithm in such manner to minimize ESP’s investment 
costs (CAPEX) in RES and FlexAssets. The holistic network-aware approach takes into 
consideration various electricity markets, network topology and constraints or, at least, 
reduced network topology knowledge - DSO’s geographical zone approach as in the NODES 
flexibility marketplace paradigm, detailed study of various battery types (their characteristics 
such as charging/discharging efficiency, etc.), RES generation (weather), consumption and 
market price forecasts. Such an approach should enable efficient exploitation of available 
instruments to ensure reliable energy supply with the lowest possible CAPEX. The single-level 
optimization problem assumes the ESP as a price-taker that may also be the same entity as 
DSO, or at least have all the vital network topology information for the algorithm to run 
properly. 

 

Chapter 5 presents the research problem of the FLEXGRID UCS 2.3. It analyses a profit-seeker 
ESP, who owns a set of Battery Storage Units (BSUs) located at various nodes of a distribution 
network. In order to maximize its stacked revenues, the ESP may co-optimize its participation 
in several energy markets, including the proposed Distribution Level Flexibility Market 
governed by the respective Flexibility Market Operator (FMO), and dynamically optimize its 
bidding strategy. In more detail, it exploits market price forecasts, energy prosumption 
forecasts and information on the underlying network topology in order to derive its optimal 
scheduling and bidding strategy towards maximizing its operating profits. To formulate the 
ESP’s decision process, we propose a bi-level model, where the lower-level problems 
represent the clearing processes of the Reserve and the Flexibility Markets, in which the ESP 
participates strategically (i.e. as a price maker). 

 

Chapter 6 consists of the efforts made as part of the research problem of FLEXGRID UCS 2.4. 
Advanced models and algorithms are developed that factorize three main requirements that 
modern ESP companies need to adopt in order to efficiently interact with the various market 
and network dynamics that high RES penetration brings into the system, namely: 1) adopt 
imperfect market context - aware bidding strategies to maximize their profits, 2) respect the 
underlying network constraints, and 3) make decisions about the optimal mix of their 
heterogeneous flexibility assets as well as their optimal sizing, siting and operation. The main 
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purpose is to schedule Energy Storage Systems (ESSs) and Demand Side Management (DSM) 
systems optimally and in an integrated way to maximize a price maker ESP’s profits. In this 
UCS, we consider that the ESP is aware of the network topology data and can thus participate 
in energy markets in a network-aware manner (i.e. by not causing network infeasibility 
problems to the DSO).  

 

Chapter 7 considers the work done under the FLEXGRID research problem UCS 2.6. Here, we 
focus on large FlexAsset owners, who are willing to lease their storage capacity to several 
interested parties. The main interaction is between a large FlexAsset owner that wants to 
lease its storage capacity(/power) and a user willing to outsource their energy storage system 
needs by procuring them from the mentioned FlexAsset owner. Such business model may 
generate income to the FlexAsset owner simply by leasing its storage capacity, while various 
market participants may generate profit (or lower costs), increase safety & reliability and 
postpone capital intensive actions using leased storage capacity that they do not own. 
Variation from this approach is a concept where storage market operator (SMO) plays the 
role of an intermediate like platforms such as Airbnb, Booking, Uber and other similar 
business models. SMO does not own (at least it doesn’t have to) any storage facilities, but it 
connects supply with demand and guarantees both sides of the deal that certain rules will 
always be respected. So, the operator aggregates virtual battery storage facility composed of 
many distributed storage systems with different characteristics. 

 

Finally, in Chapter 8, we describe the integration of the research work of WP4 within the FST 
and FLEXGRID ATP (WP6), the validation and implementation in pilot sites (WP7) and the 
relation/interaction of the aggregator within the WP8 business models, values propositions, 
and the exploitation plan. 
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1  Introduction  

 

In the High Level Use Case (HLUC) #2 the focus is on the development of advanced flexibility 
management services for the profit-oriented Energy Service Providers (ESPs). An ESP is, per 
definition in D2.11 a profit-oriented company, which may enter into contractual 
arrangements with various types of flexibility assets (e.g. DSM, RES, storage). Services 
provided via FLEXGRID ATP, or more specifically – FlexSupplier’s Toolkit (FST), to the 
respective ESP, are intended to help utilizing FlexAssets in an optimal manner. These service 
include advanced forecast methods both for market prices and RES generation (emphasize 
on PV), together with models and algorithms to optimize ESP’s market behavior in a holistic 
way (e.g. via optimal scheduling, bidding, siting and sizing models and algorithms). 
Deliverables D2.1 and D2.2 documented respective Use Case Scenarios (UCSs), which 
encompass the above-mentioned features. 

 

The focus of interest in the HLUC #2 is the ESP actor, its participation in various markets and 
its interaction with DSOs/TSOs and BRPs. Different formulations of Distribution Level 
Flexibility Markets are considered and characteristics of each analyzed and commented for 
different use cases. Although participation of ESPs in DLFMs is closely analyzed, it is important 
to mention that ESP is not constrained only on providing flexibility services, but it may 
participate in all existing markets (e.g. day-ahead energy market, reserve market, balancing 
market, etc.). 

 

In the previous deliverables (D4.1 and D4.2), six research problems have been clearly defined. 
Four of them are an integral part of WP4 efforts, whereas one research problem (RES and 
market forecasting) is also analyzed as part of the WP3 efforts. In D4.1, a high-level 
description of the six research problems has been presented, including a survey of related 
works from the international literature. Furthermore, FLEXGRID’s research contributions 
have been clearly defined and hints about the problem formulation, algorithmic solution, 
datasets to be used for the system-level simulations and most important key performance 
indicators (KPIs) have been presented. D4.2 further elaborated on the work of D4.1, close-
to- final version of mathematical modeling and proposed algorithms were presented. Where 
possible, initial performance evaluation results were also presented.  

 

This deliverable further extends the work done in the previous deliverables (D4.1 and D4.2) 
with final mathematical models and the presentation of the performance evaluation results.  

 

 

 

 

                                                        
1 https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D2.1_v1.0_31012020.pdf  

https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D2.1_v1.0_31012020.pdf
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Following the work done in previous deliverables, four research problems directly focused 
on ESP were identified and one combined WP3 and WP4 work efforts. For each of these 
problems, the approach was similar. The process consisted of formulating mathematical 
models and creating appropriate tools to propose new and enhance existing ESP business 
models. The research problems are following: 

 

1. ESP exploits FLEXGRID’s advanced forecasting services to predict market prices and 
FlexAssets’ state and curves in the future (cf. UCS 4.4) 

2. The ESP user wants to minimize its operational expenses (OPEX) by optimally scheduling 
the consumption of end users, production of RES and storage assets (cf. UCS 2.1) 

3. The ESP user wants to minimize its capital expenditures (CAPEX) by making optimal 
investments (i.e. optimal siting and sizing) on RES and FlexAssets (cf. UCS 2.2) 

4. The ESP user wants to create an optimal FlexOffer for simultaneous participation in 
multiple markets to maximize its business profits (cf. UCS 2.3) 

5. Market-aware and network-aware bidding policies to optimally manage a virtual 
FlexAssets’ portfolio of an ESP (cf. UCS 2.4) 

6. Independent large FlexAsset Owner leases storage for several purposes to several market 
stakeholders (cf. UCS 2.6) 

 

Chapters 2-7 focus on each of the above-mentioned research problems, respectively. The 
first research topic, which focuses on advanced forecasting services to predict market prices 
and PV output in the future, is combined work effort from WP3 and WP4, while other 
research problems are entirely WP4 related. Research problem in chapter 3 derives optimal 
scheduling algorithm to minimize ESP’s OPEX, whereas the next chapter focuses on 
minimizing ESP’s CAPEX using novel siting and sizing algorithm. Chapter 5 presents algorithms 
developed to maximize ESP’s stacked revenues; next chapter further elaborates on work 
presented in D4.2 by applying the proposed mathematical model and algorithm for a 
MicroGrid Operator’s (MGO) business case. Chapter 7 concludes WP4 related research 
problems considering large FlexAsset owners who are willing to lease their storage capacity 
to several interested parties. Each of the above-mentioned chapters are similarly structured 
to encompass: 

 A summary of FLEXGRID research results so far 

 System model 

 Problem formulation 

 Simulation setup and performance evaluation results 

 Concluding remarks and lessons learned 
 

 

The work of WP4 focuses on the scientific excellence of the proposed FLEXGRID services 
(identified open research items) at TRL3. The most important WP4 scientific results are 
adapted in order be able to serve the business needs of an aggregator. Thus, in WP6, our 
focus is on FLEXGRID’s research impact on today and future ESP’s business by demonstrating 
WP4 from the short-listed UCSs (2.1, 2.2, 2.3) intelligence in the FLEXGRID ATP (i.e. TRL 5).  
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More specifically, FST’s frontend (GUI) will be comprised of three basic tabs, namely:  

 ESP’s OPEX minimization (UCS 2.1) 

 ESP’s CAPEX minimization (UCS 2.2) 

 ESP’s profit maximization (UCS 2.3) 

 

Following up the FST’s frontend services, three main WP4 algorithms are being integrated in 
FST’s backend, namely: 

 A scheduling algorithm enables the ESP user to reduce operational expenses, while 
respecting given constraints. The algorithm determines the optimal operation 
schedule for the FlexAssets in the ESP’s portfolio. The proposed solution is described 
in detail in chapter 3 (cf. UCS 2.1). 

 A siting and sizing algorithm for the potential new FlexAssets in a least capital cost 
manner, while meeting some goal such as e.g. 5% OPEX reduction. The proposed 
solution is described in detail in chapter 4 (cf. UCS 2.2). 

 An algorithm that generates an optimal set of energy and FlexOffers for simultaneous 
participation in multiple markets to maximize ESP’s business revenues. The proposed 
solution is described in detail in chapter 5 (cf. UCS 2.3). 

  

The table below summarizes how the WP4 research results (TRL 3) will be further exploited 
in WPs #6 and #8. 

 

FST GUI (WP6) Mode of 
operation 

Business goal (WP8) 

ESP’s OPEX 
minimization 

Online Assume that the day-ahead market (DAM) dispatch is given and 
should be respected by the ESP. For an issued FlexRequest by 
DSO/TSO expected to be met by the respective ESP, a new 
schedule is calculated. 

Offline The ESP user runs various “what-if” simulation scenarios 
assuming various FlexRequests and FlexAsset portfolios. 

ESP’s CAPEX 
minimization 

Offline  The ESP user runs various “what-if” simulation scenarios 
assuming various mixes of FlexRequests and FlexAsset 
portfolios. ESP assumes a given OPEX reduction target (e.g. 5%) 
and tries to find the minimum CAPEX to meet this target. 

ESP’s profit 
maximization 

Online The ESP user has the initiative. It takes market price forecasting 

data for 4 markets (i.e. day-ahead, reserve, DLFM, balancing) 
and calculates 4 optimal energy and FlexOffers to submit in ATP. 

Offline The ESP user runs various “what-if” simulation scenarios via 
running a stacked revenue maximization algorithm to identify 
how it can achieve maximum expected profits. 

 

 

The research work of WP4 proposes novel business models for advanced ESPs and RESPs. 
The special emphasis has been given to x-DLFM architectures and, more specifically, 
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strategies for ESPs to benefit from various potential DLFM versions; hence the operation of 
an online flexibility marketplace (i.e. FLEXGRID ATP) is assumed. The ESP may use the set of 
algorithms developed as part of the WP4 work efforts to manage its FlexAssets, optimally 
participate in various markets and consequently reduce its expenses (both CAPEX and OPEX). 
Some of the features may be used both online and offline, and some only offline with 
predefined scenarios, but all serve the respective ESP as a tool to analyse different possible 
decisions and formulate optimal business strategy taking in mind all necessary constraints 
and conditions. Based on the results and the multiple extensions of the research of WP4, 
policy and regulation makers can extend and formulate new strategies so that the respective 
ESPs and RESPs may successfully participate in future electricity market structures and 
consequently facilitate future high RES penetration scenarios and EU’s smooth energy 
transition within the next decades. For more details about specific policy recommendations 
and lessons learned, the reader can follow the respective tables at the end of each chapter 
below. 
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2  PV Production and Market Price 
Forecasting (UCS 4.4) 

FLEXGRID’s research contribution services includes an accurate PV generation forecasting to 
ESPs/aggregators. ESPs/aggregators will be provided with forecasting services by aggregating 
their end-users’ PV generation (both day-ahead and intra-day – predominantly from PV 
systems) and consider the other available assets such as battery storage.  

Based on the previous deliverable D4.1 and D4.2 [1], [2] respectively, the FLEXGRID’s PV 
generation forecasting services are located at the Automated Flexibility Aggregation Toolkit 
(AFAT) and FlexSupplier’s Toolkit (FST). Succeeding the modular-by-design nature of 
FLEXGRID S/W architecture, the advanced forecasting algorithms are executed iteratively in 
the forecasting engine, while well-designed web APIs will provide:  

i. the input parameters and data for the execution of algorithms; 
ii. the output parameters that will be sent to the FLEXGRID ATP and then visualized by the 

ESP/aggregator users. 

 

2.1.1 Introduction 

Within the previous deliverable D4.2 [2], a short-term (hour-ahead) and medium-term (day-
ahead) PV generation forecasting methodology was described based on a non-parametric 
ANN model. The ANN model was optimized according to the input and output parameters. 
To achieve accurate and efficient short-term and medium-term forecasting, three phases 
were followed, namely: 

i. Training: For the training phase of the day-ahead PV generation forecast, historical 
data of the reference systems were used (PDC). Furthermore, Numerical Weather 
Prediction ( 

ii. NWP) data were employed in order to evaluate the actual forecasting performance 
of the developed methodology. The NWP data were derived using the Weather 
Research and Forecasting (WRF) model, which is a mesoscale model designed for 
atmospheric research and operational forecasting applications. More specifically, the 
input parameters acquired from the NWP includes the global horizontal irradiance 
(GHI) as well as the ambient temperature (Tamb). Also, to improve the accuracy of the 
ML forecasting model, the elevation angle of the sun (α) and the azimuth of the sun 
(φs) are calculated using solar position algorithms and utilized to address the angular 
response of the PV systems. 

iii. Validation: During this phase, the hyperparameters of the ML models are being 
optimized through a series of statistical and empirical approaches. The optimization 
phase is using the Early Stopping approach to avoid overfitting when the 
hyperparameters were not exhibiting any further improvements (in some cases 
declination might be demonstrated).    

iv. Testing: During the testing phase, the forecasting accuracy of the ML model was 
assessed.  
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Figure 1 demonstrates the aforementioned procedure  as described  in [3], [4], too. 

 

 
Figure 1 Flow chart of the day-ahead PV generation forecasting model: Overview 

 

2.1.2 Extensive simulation results 

The forecasting methodology used for UCS 4.4 is based on a Bayesian Regularized Neural 
Network (BRNN), while a sequence of training and validation stages was performed by 
varying the input parameters (features), samples used and architectural parameters 
(hyperparameters) of the devised machine learning models in order to construct the 
optimally performing ANN. Bayesian inference, L2 regularisation, and stochastic gradient 
descent were utilised along with the logistic sigmoid as activation function for each node. A 
detailed description of the specific stages followed to develop the PV production forecasting 
methodology was already provided in deliverables D4.1 and D4.2 [1], [2]. 

 

Summarizing the D4.1, for accurate day-ahead and hour-ahead PV generation forecast, high-
quality historical data are needed. The more the forecasting model is trained with historical 
data, the more accurate the result will be. The input datasets include the historical observed 
PV power data (Pdc) and the historical NWP data; Ambient Temperature (Tamb), Global Plane of 
Array Irradiance (Gpoa) or Global Horizontal Irradiance (GHI) of the same period are mandatory 
for the training and testing phase of the ANN model. Additionally, for the simulations, PV 
system coordinates will be also used to calculate the α, φss, sunrise and sunset time. Several 
predefined metrics are assessed for the forecasting performance accuracy. The metrics 
commonly used in PV production forecasting applications include the: 

 Mean absolute error (MAE) 

 Mean absolute percentage error (MAPE) 

 Root mean square error (RMSE) 

 Normalised root mean square error (nRMSE) 

 

For the respective simulations, a test set period of 200 days in hourly intervals were 
used.  Figure 2 shows the forecasting accuracy performance of the ANN model, evaluated by 
employing the daily nRMSE over a test set period of 200days. In Figure 2, a comparison 
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between the ANN forecasting model without data quality routines (DQRs) and the ANN 
forecasting model with DQRs is presented. Specifically, the PV forecasting model without 
DQRs demonstrated an nRMSE of 11%, while the nRMSE of the PV forecasting model with 
DQRs was 9% (data points at solar irradiance levels <100W/m2 were filtered out). It is worth 
mentioning that the correction of the input data before the training phase of the ANN model 
can bring more accurate results. In Figure 2, a 2% decrease in the average nRMSE was noticed 
after correction of the input data.  

 

 
Figure 2 Daily nRMSE of: (a) Forecasting model without DQRs and (b) Forecasting model 

with DQRs. The blue dashed line of both figures demonstrates the average nRMSE. 

 

Figure 3 shows the daily MAPE obtained when the optimal ANN day-ahead PV power 
production ensemble forecasting model with post-processing correction was applied to the 
test set period. The overall MAPE obtained was 4.7% (data points at solar irradiance levels 
<100 W/m2 were filtered out). 
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Figure 3  Day-ahead PV power production forecasting accuracy given by the daily MAPE 
when applying the optimal ANN day-ahead PV power production ensemble forecasting 

model with post-processing correction, over the test set evaluation period (210 days). The 
blue dashed line demonstrates the overall mean absolute percentage error (MAPE) at 

4.7%. 

 

Additionally, the scatter plot in Figure 4 demonstrates the forecasted and observed power 
output variation of the models at different in-plane solar irradiance levels. As shown in Figure 
4, the obtained R2 value for the reference model was 0.98 exhibiting a high linear correlation. 
This variation is more evident and influential at high in-plane solar irradiance conditions > 
600 W/m2. R2 measures the quantity of variation in the dependent parameter that can be 
attributed to the independent parameter. R2 is a value between 0 and 1, where 0 indicates 
weak fit while 1 indicates perfect fit. 

 

 
Figure 4 Scatter plot of forecasted and observed Power at different irradiance levels 

 

Finally, to ensure the methodology’s robustness to the K-fold cross validation (CV), the 
acquired dataset was separated into 8 folds of randomly selected data. At each evaluation 
CV round, the optimal BRNN forecasting model was trained with seven training set folds and 
tested against the remaining testing set fold. The process was finalized when all folds have 
been exploited as testing folds as shown in Figure 5. 
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Figure 5 K-fold CV technique to investigate the robustness of the optimal BRNN 

forecasting model 

 

Figure 6 shows the daily nRMSE results of the K-fold CV technique applied to the optimal 
BRNN forecasting reference model that ranged from 3.46% to 4.78%, with an average of 
4.01% and standard deviation of 0.59%. The low variation between the various training 
conditions demonstrated that the implemented model is robust in terms of the error 
variation during the K-fold CV. Moreover, the daily nRMSE of each individual testing fold did 
not exceed a 5% performance threshold, which demonstrates that the model is sufficiently 
accurate for all training conditions.  

 

 
Figure 6 K-fold cross-validation nRMSE for the optimal ANN forecasting reference model 

(Mod4). The blue dashed line indicates the nRMSE obtained for all folds. 
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2.1.3 Lessons learnt 

Utility grids with large share deployment of distributed PV systems are already facing a 
reflective conversion to modern digitally-enhanced technologies, which will allow the 
observability and regulation of distributed energy resources (DERs). This is the main reason 
why grid operators aim towards including intermittent renewable generation in their 
network planning models and optimization processes. To this end, the present electrification 
and decentralization tendencies are accelerating the conversion of the current power sector 
standard to completely expose system flexibility for high renewable penetration with 
innovative digital tool, with a specific direction to PV power generation forecasting [5].  

 

To moderate power quality effects postured through large shares of PV systems, utilities 
necessitate PV power production forecasts for core generation dispatch and scheduling 
operations. Forecasting is a key enabler, which can safeguard operational and monetary 
integration of PV through structured associations with multiple power system flexibility 
innovations. Forecasts concentrate on the output power or the rate of change (ramp rate) of 
power of a single PV system or the aggregation of multiple PV systems. In particular, accurate 
PV power forecasting is a significant energy management component for utilities, which can 
conserve excessive spinning reserve, improve stability by optimally balancing consumption 
and generation, decrease integration and ancillary services costs and ensure unified 
integration of renewable energy sources (RES). Additionally, it enables the effective 
participation of PV plants and aggregated systems into electricity markets and allows 
distribution areas to turn into commercially viable microgrids that spur the value of low-cost 
solar electricity. An overview of the benefits provided by PV power forecasts for mitigating 
grid integration issues can be found in [6], [7], while a study that includes the targets for 
regional and point PV forecasting can be found in [8]. 

 

2.1.4 Next steps 

The PV generation forecasting methodology was completed in M26 of the project (current 
month), therefore, the methodology was tested and evaluated against historical PV data-
frames of parks located in Cyprus and also with historical PV data-frames of parks that are 
located in different climates. Furthermore, another research task, which is related to WP6 
work is the integration of the proposed PV generation forecasting algorithms into the AFAT 
and FlexSupplier’s Toolkit (FST). Thus, the ESPs/aggregators will be able to increase their 
profits by making informed market decisions and minimizing errors and deviation from the 
declared position. 

 

2.2.1 Introduction 

Market price forecasting is part of the forecasting tools that will help ESP / Aggregator actors 
to participate effectively in distribution-level flexibility markets (DLFMs) and wholesale 
markets. Specifically, the market price forecasting tool will be a reliable forecasting tool that 
will be used to forecast the Day-Ahead market prices using historical data from specific areas. 
Also, it will be based on the operation framework and the regulatory context, which govern 



25 

 

the Day-Ahead market.  In this market, bidding for day D occurs at 12:00 of the previous day 
D-1. The market clearing price of day D is then published 43 minutes later at 12:43. This 
timeframe of day ahead market is depicted by the diagram of  Figure 7. 

 
Figure 7: Day Ahead Market context 

 

As it is stated in deliverable D4.2 [2], the motivation for creating such a tool is that it is 
anticipated to facilitate the risk assessment and thereby will provide insights to ESPs / 
Aggregators planning and management of their flexibility assets in view of increasing their 
profits. It will also enable RES owners to participate in the markets by offering high quality 
services. In general, there is an incentive to further improve the forecast and Market Forecast 
Accuracy Levels (MFAL). 

 

The development of the market price forecasting tool is based on the UCY expertise in 
forecasting that is applied for first time in energy markets through the FLEXGRID project. 

 

2.2.2 Extensive simulation results 

The factors and physical variables that affect the electricity market prices are inter-related 
and uncertain. This renders the electricity price forecasting more challenging than other 
forecasting tasks, such as those for power production or demand forecasting.  The core of 
the proposed forecasting algorithm is the Extreme Learning Machine (ELM). This algorithm 
as opposed to other neural network algorithms has short learning time with good 
generalization performance [9]. This quick learning feature is exploited by coupling the ELM 
with other methods such as bootstrapping in order to improve the forecasts. 

 

ELM is a Single Layer Feedforward Neural network (SLFN) as shown in Figure 8. The weights 
w that connect the input with the internal layer are selected randomly. The biases of the 
hidden layer neurons are also determined randomly. The network is trained by computing 
the output weights (β) that match the training data x with the training target values y.  This 
matching is expressed by equation 1 where L is the number of the hidden neurons and θ is 
neuron activation function,  
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Figure 8: A typical structure of ELM 

 

∑ 𝜃𝑖(𝑥𝑖)𝛽𝑖 = ∑ 𝜃(𝑤𝑖 ∙ 𝑥𝑗 + 𝑏𝑖) = 𝑦𝑗

𝐿

𝑖=1

𝐿

𝑖=1

 (1) 

 

Casting equation (1) in the form, 

 

𝐻𝛽 = 𝛶 (2) 

where H is the Hidden Layer Output matrix given by 

 

H = (
𝜃(𝑤1 , 𝑏1, 𝑥1) ⋯ 𝜃(𝑤𝐿 , 𝑏𝐿 , 𝑥1)

⋮ ⋱ ⋮
𝜃(𝑤1 , 𝑏1, 𝑥𝑛) ⋯ 𝜃(𝑤𝐿 , 𝑏𝐿 , 𝑥𝑛)

)

𝑛×𝐿

 (3) 

 

 

and β are the output weights and Y are the market prices. The training is achieved by 
computing the output weights β by solving equation 2 as follows, 

 

𝛽 = 𝐻′𝛶 (4) 

where H’ is the Moore-Penrose generalized inverse of the Hidden Layer (H) matrix. 

 

The training data of the ELM consist of historical data of 23 consecutive days. These data are 
divided into 20 samples of 72 values and a different ELM is trained for each sample. That is 
to compute the vector β, using randomly selected weights (w) and biases, b, as described by 
equation 4. 

 

This algorithm is used to forecast Day Ahead market prices for the Finnish and German Day 
Ahead markets. Historical market prices in Finland are obtained from the Nord Pool [10] 
while historical production forecast, consumption forecast and RES production forecast data 
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are obtained from the Finnish TSO [11]. The historical data of Germany were provided by 
BnNetze. The historical data used were for the years 2019 and 2020. 

 

As the market prices are highly volatile the market price samples were divided into three 
categories: those containing negative market prices, extremely high (positive) market prices 
and normal market prices. Negative prices usually occur in cases where renewable 
production is high and demand is relatively low, and on the contrary, extremely high 
(positive) prices occur in cases where the production from renewable is low and the 
activation of expensive power plants is required to cover a relatively high demand. In 
addition, the main characteristic of negative or extremely high (positive) prices is that they 
do not appear often and for this reason they are difficult to forecast. The performance of the 
proposed algorithm is evaluated against these three categories. The days were separated as 
follows: Days that showed at least one negative market price, days that showed at least one 
extremely high (positive) market price and days that had no negative or extremely high 
(positive) market price. 

 

Negative market prices are market prices that are less than zero. Extremely high (positive) 
market prices are determined through a threshold that is defined by [12] , 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜇 + 2𝜎 (5) 

where μ is the sample mean and σ the sample standard deviation.  

 

The threshold for each market was computed using the historical price data of the year 2019. 

The computed threshold for the Finnish is 74,61 (
€

𝑀𝑊ℎ
) while for the German market 68,70 

(
€

𝑀𝑊ℎ
). Market prices exceeding these thresholds are considered extremely high while 

normal market prices are considered those that do not exceed the threshold. 

 

Initially the algorithm was used to make 366 forecasts for the entire year 2020 and 
subsequently for each market price category. Also, the effect of activation functions was 
studied and for this reason different activation functions were used as activation functions 
dictate learning by determining the neurons that fire in the presence of characteristic 
features. 

  

Figure 9 shows the average Mean Absolute Error (MAE) for each activation function for the 
various data sets. As can be seen, the sigmoid function gives better results compared to the 
other two functions.  
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Figure 9: Average MAE for all days of 2020 using various historical data sets (Finland 
market) 

 

The average MAE is relatively high because there are several market prices that exceeded 
the threshold (equation 5) and were considered extremely high (positive). Specifically, there 

were 186 market prices (more than is 74,61 (
€

𝑀𝑊ℎ
)) which are extremely high. The histogram 

in Figure 10 shows the market price distribution of Finland for the year 2020. 

 

 
Figure 10: Market Price distribution of Finland for the year 2020 

 

The Finnish market in the year 2020 showed several high market prices. There were 21 

market prices which were over 150 (
€

𝑀𝑊ℎ
). On the contrary, the negative market prices that 

appeared were only 9 and were between [-2-0) (
€

𝑀𝑊ℎ
). Most prices were between [2-32) 

(
€

𝑀𝑊ℎ
). 

 

Figure 11 shows the average of the actual market prices for each hour for all days of the year 
2020 and the average of the forecast values per hour given by the algorithm. It can be seen 
that the forecast of extremely positive high values is not very accurate. However, from this 
figure it can be concluded that on average high price values are expected to occur at 7 a.m 
and 6 p.m. 
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Figure 11: Comparison (on average) of actual market prices with the forecast market 

prices for all days of 2020 (Finland market), Mean MAE=11,67 (
€

𝑴𝑾𝒉
) 

 
Figure 12: (Average) MAE calculation using different historical data sets (Finland Market) 

for each market price category: a) Negative market prices, b) Extremely high market 
prices and c) Normal market prices 

a) 

b) 

c) 
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Figure 12 shows the three different activation functions and datasets were used for each of 
the three categories of market prices. In the case of negative market prices, the arctan 
function gives the better result compared to the rest. Also, using only market prices gives 
slightly better results compared to other datasets. In the case of extremely high (positive) 
market prices the three activation functions gave similar results. However, the better result 
is obtained when using the arctan function together with market price data. In the case of 
normal market prices, the results are better than the results of the other two categories. The 
results given by the sigmoid and arctan are close. On the contrary, the derivative of Eliot 
Sigmoid gives the worst results. The better result is obtained in the case of the sigmoid and 
by incorporating the consumption forecast data, RES production forecast data and market 
price data which are entered together in the input of the algorithm. 

 

In Figure 13, the graphs show the average actual market prices per hour and the average 
hourly forecast market prices for each market price category. In case a) the negative market 
prices appear between 12-4 a.m and the algorithm cannot forecast them. In case b) where is 
the category of extremely high (positive) market prices it seems that the algorithm cannot 
forecast these prices while in case c) with normal market prices the algorithm gives better 
results. As mentioned above the algorithms cannot predict negative and extremely high 
(positive) market prices because they do not occur often. 

 

 

a) b) 

c) 
Average-MAE: 13,30 

€
   

Average-MAE: 18,89 
€

   

Average-MAE: 10,40 
€
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Figure 13: Comparison (on average) of actual market prices with the forecast market 
prices (Finland market) for each market price category: a) Negative market prices, b) 

Extremely high market prices and c) Normal market prices 

 

Figure 14 shows the results (average MAE) of the algorithm using data from the German 
market. Activation functions give similar results. The better result is given by the sigmoid 
function using only market price data. If these results are compared with those given by the 
algorithm using the data from Finland, it is better. The reason is that Germany showed several 
negative market prices (some were very negative) compared to Finland but did not have such 

extremely high (positive) market prices. Most market prices were between (25-35] (
€

𝑀𝑊ℎ
). 

The market price distribution of Germany is shown in Figure 15. 

 

 
 

Figure 14: Average MAE for all days of 2020 using various historical data (German market) 

 

 

 

 
 

Figure 15: Market Price distribution of German for the year 2020 

 

Figure 16 shows the average of the actual market prices per hour and the average of the 
forecast market prices per hour given by the algorithm for all days of the year 2020. As it can 
be seen the forecast of the extremely high (positive) market prices is not very precise. 
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Figure 16: Comparison (on average) of actual market prices with the forecast market 

prices for all days of 2020 (German market), Mean MAE=9,37 (
€

𝑴𝑾𝒉
) 

 

Figure 17 shows the average MAE resulting from the comparison of the actual market prices 
and forecast market prices given by the algorithm for each market price category. In the case 
of negative market prices, the results given by the activation functions do not differ much. 
Also, the average MAE is relatively high because there are several negative market prices. 
The better results are given by the arctan and derivative Eliot sigmoid functions using 
consumption forecast data as the input. 

 

In the case of extremely high (positive) market prices the sigmoid function gives a better 
result compared to the other two functions. The better result is obtained using market price 
data. In the case of normal market prices, the results are better compared to the other two 
categories. Using the sigmoid function with market price data gives the better result. 
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Figure 17: (Average) MAE calculation using different historical data sets (German Market) 
for each market price category: a) Negative market prices, b) Extremely high market 

prices and c) Normal market prices 

 

In Figure 18, the graphs show the average actual market prices per hour and the average 
hourly forecast market prices for each market price category. As the graphs show, the 
algorithm cannot forecast negative or extremely high (positive) market prices because they 
do not appear as often. On the contrary, in the case of normal market prices the algorithm 
gives much better results. 

 

a) 

b) 

c) 



34 

 

 

 

Figure 18: Comparison (on average) of actual market prices with the forecast market 
prices (German market) for each market price category: a) Negative market prices, b) 

Extremely high market prices and c) Normal market prices 

 

2.2.3 Lessons learnt 

The histogram shown in Figure 19 shows the mean of the difference between production 
forecast and consumption forecast (Production Forecast – Consumption Forecast) for each 
market price ranges in Germany for the year 2020. From this histogram an important 
conclusion that can be drawn is the nature of the market. That is, the balance between 
consumption and production, and consequently the market.  

 
Figure 19: Production Forecast – Consumption Forecast (Balance between production 

forecast and consumption forecast is close to zero: 35-40 (
€

𝑴𝑾𝒉
)) 

a) b) 

c) 
Average-MAE: 18,20 

€
   

Average-MAE: 13,76 
€

   

Average-MAE: 7,26 
€
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Market price forecasting is very important for market participants because they will be given 
the opportunity to address risks and have information that will help in better planning that 
will bring them more profits. However, market price forecasting has many challenges due to 
the dependence of market prices on many external factors, such as fuel prices, weather 
conditions, production, demand, etc. In addition, the need to create an electricity grid based 
on renewable technologies has resulted in market price volatility becoming even greater. 
That is why in many cases the market price is negative or extremely high (positive). The 
negative price is due to the fact that the high production of renewables which has low 
marginal costs meets production from inflexible power plants (e.g. nuclear power plants, 
lignite power plants and CHP plants) and demand is low. Extremely high (positive) market 
prices exist when demand is very high, production from renewables is low and the integration 
of high-cost power plants is necessary to meet high demand. But extreme market prices are 
very difficult to forecast because they do not appear often. Therefore, creating a flexible 
forecasting tool that can forecast outliers (negative market prices or extremely high (positive) 
market prices) will be a very important tool especially for new market participants (e.g. 
aggregator) who will be able to compete with others by providing high quality services. 

 

2.2.4 Next steps 

The next steps are to improve the predictability of the algorithm, in cases where there are 
negative values or extremely high values. One thought is to correct the forecast market prices 
given by the algorithm based on some ratios. That is, a ratio that can help correct forecasts 
is Production Forecast / Forecasted Residual Load or Consumption Forecast/ Forecasted 
Residual Load (Forecasted Residual Load= Consumption Forecast – RES Production Forecast). 
Figure 20 shows a histogram in which there is the mean of the ratios for each market price 
ranges. 

 

 
Figure 20: Mean of ratios for each market price ranges 

 

When the market prices are negative the Production Forecast / Forecasted Residual Load is 
very high because the production forecast is much higher than the consumption forecast and 
the forecasted residual load is small because the renewable production forecast is low (for 

market prices less than -55 (
€

𝑀𝑊ℎ
) the mean Ratio is above 70). As the market price increases 

the ratio decreases because the production forecast decreases, the consumption forecast 
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increases and the renewable production forecast decreases (for over 70 (
€

𝑀𝑊ℎ
) the mean 

ratio is less than 1).  

 

A similar situation applies in the case of Consumption Forecast / Forecasted Residual Load.  
For negative market prices the ratio is high because the forecasted residual load is low 
because the renewable production forecast is high. While as the market price increases the 
ratio decreases because the forecasted residual load increases due to the reduction of 
renewable production forecast. So, a high ratio will mean that most likely the market price 
will be negative and when it is low it will mean that the market price is extremely positive 
high. 

 

After M26, the market price algorithm will be integrated into the platform. This algorithm 
belongs to the forecasting engine, which will reside in the Automated Flexibility Aggregation 
Toolkit (AFAT) and FlexSupplier’s Toolkit (FST). The main feature of the platform is the 
modular-by-design S/W architecture, where the APIs give the inputs to the algorithm and 
then will transfer the results to FLEXGRID ATP to be exploited by ESPs/Aggregators users. 

 

 

 

 

 

 

 

 

 

 



37 

 

3  ESP’s OPEX minimization problem (UCS 2.1) 

This chapter deals with the research problem of UCS 2.1. In the center of the problem, we 
observe scheduling actions from an Energy Service Provider’s (ESP) perspective. In the scope 
of the FLEXGRID project, ESP is considered as a profit-oriented market participant which, in 
the most general case, may make contractual arrangements with various types of flexibility 
assets (e.g. DSM, RES, storage). Furthermore, it may participate in energy and capacity 
wholesale markets, sell the energy on the retail market and take part in the near-real-time 
flexibility markets. For the purposes of UCS 2.1., the model is not network aware, so the exact 
location of Battery Storage Units (BSUs) is not relevant, nor are other grid constraints. The 
optimal scheduling algorithm is the base for the operational expenditure minimization 
problem, in that manner, following markets are considered:  

 Day-ahead Energy Market (DA-EM) operated by the MO  

 Day-ahead Distribution-Level Flexibility Market (DA-DLFM) operated by a novel 
market entity introduced by FLEXGRID market architecture, called FMO 

 Intraday Energy Market (IDM) operated by the MO 

 Near-real-time Balancing Market (BM) operated by the TSO  

 

Within FLEXGRID project’s context and this UCS, we propose two novel energy market 
architectures. Namely, 1) Reactive and 2) Proactive Distribution Level Flexibility Market 
(R- and P-DLFM). While the R-DLFM is fully compatible with today’s EU regulatory 
framework, P-DLFM would require same adjustments. Participation in the different 
markets provides the ESP with the opportunity to reduce its operational expenditures 
(OPEX) using a scheduling algorithm. Accounting for the price uncertainty in each of the 
modeled markets, the optimal scheduling algorithm produces such strategy which results 
in higher profits for the ESP user.  

 

In this market environment, a BSU owner can decrease its OPEX by providing energy and 
ancillary services in various markets, including the proposed x-DLFM market. In UCS 2.1, 
we consider an ESP as a market stakeholder, which owns BSUs and may participate in 
markets at the transmission and distribution level.  

 

Excluding the distribution and transmission system operators as textbook examples of 
natural monopolies, modern electrical power systems lean towards free market principles. 
Hence, they are open for participation to any interested party that meets certain technical 
and economical requirements. ESPs’ portfolios may be composed of a wide variety of services 
and technologies (demand response, renewable energy resources – RES, battery storage, 
etc.) and they may bid in different electricity. It is the diversity of technologies in their 
portfolio and their availability to participate in various markets that drives the profit 
amplitudes between the optimal and sub-optimal solutions. More specifically, each 
technology has its own technical peculiarities, whereas the markets have specific rules. 
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Hence, such complementarity may result in high profits, but also in high costs in case of 
flawed modelling and poor predictions. Competitive markets do not tolerate sub-optimal 
strategies, so it is in the players’ best interest to ensure optimal market performance to 
prevail their rivals. Furthermore, the complexity of the problem at hand increases with the 
addition of new markets. Considering the intermittent nature of RES, an important question 
is how to accommodate high shares of RES in the total energy mix while ensuring safe and 
reliable power supply at all times. FLEXGRID proposes a novel distribution-level flexibility 
market (DLFM) as a solution to facilitate high-RES penetration and an active role of 
consumers. Existence of the DLFM creates, on the one hand, opportunities for the 
Transmission System Operator (TSO) and the Distribution System Operator (DSO) to procure 
flexibility services and avoid network problems. On the other hand, the DLFM presents an 
opportunity for profit-oriented entities, e.g., ESPs, to generate profit by offering their 
services in a new market. As ESPs already take part in the existing markets, it is important for 
them to generate a schedule that yields higher overall profit. Hence, based on the different 
DLFM setups, flexibility providers will have to pay even more attention to their scheduling to 
minimize deviations from their market position, which may result in the balancing market 
penalties, and reduce their inability to provide a contracted service. Such failure may result 
in disqualification from certain markets. We find it interesting and important to examine the 
consequences of different market setups and simplicity of integration into the current market 
design. The more efficient the newly proposed x-DLFM is, the faster and higher RES 
integration may be achieved. Therefore, this UCS examines the behaviour of a profit-oriented 
market player that bids not only in the conventional markets, but also in the newly proposed 
DLFM. Moreover, an analysis of the ESP’s behaviour under different market setups (sequence 
of the market clearing), may identify the most promising approach where both, the entity 
that procures the flexibility (i.e. DSO), and the entity that offers flexibility services will indeed 
benefit from such market setup. Specifics of different x-DLFM setups are examined focusing 
on how they fit the existing market structure.  In that manner, the DAM, the IDM, the BM 
and two versions of the DLFM are modelled. The developed optimization strategy finds a 
schedule that brings the highest utility to the flexibility provider, considering the 
uncertainties, constraints and characteristics of each individual market and the market 
structure in general.  This research has also been published in IEEE Access journal [13]. 

 

Considering ongoing trends in the development of distribution-level flexibility markets and 
overall shift towards RES, this work proposes an optimal scheduling algorithm to help ESPs 
minimize OPEX when participating in different markets. The ESP calculates its optimal 
strategy according to the known or predicted prices in all markets, regardless of the 
possibility that in some markets (e.g. x-DLFM) the ESP may be a price-taker entity. The 
FLEXGRID UCS 2.1 research contributions may be summarized as follows: 

 Introduction of market design that incorporates two versions of a local flexibility 
market. One version is fully compatible with the existing structures, while the latter 
would require adjustments. 

 Scheduling algorithm that considers market uncertainty. The IDM uncertainty, due 
to its continuous trading nature, is addressed using robust optimization, while 
stochastic optimization is used for DAM, BM and DLFM, which are auction-based 
markets. 
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 The effect of different definition of the DLFM is examined (R- and P-) and results 
are analysed  

 

For the research purposes of UCS 2.1, we consider a market architecture that consists of 
DAM, IDM, BM and proposed Distribution-Level Flexibility Market. Two versions of the DLFM 
are modelled. R-DLFM follows the clearing process of the DAM without the “power” to 
change the DAM schedule. Hence, if the DLFM alters the day-ahead energy market dispatch 
of the ESP’s FlexAssets participating in the DAM, ESP will have to balance their portfolio in 
the BM. The P-DLFM precedes the DAM clearing. Those two market schemes present the 
circle of modelled markets where ESP, in the context of this UCS, is able to participate in (see 
figure below for the better understanding). The range colour depicts transmission level 
markets, while yellow and blue represent two versions of the DLFM. It is also important to 
notice that the model is not network-aware, so network constraints are not taken into 
consideration in any of the mentioned markets. 

 
Figure 21 – Different DLFM setups 

 

The main difference between the P-DLFM and the R-DLFM is their clearing time. The P-DLFM 
clears before the DAM, while the RDLFM clears between the DAM and the IDM. Both DLFMs 
are distribution-level markets and operated by the flexibility market operator. Only one of 
the two proposed DLFMs can operate as they would collide if both existed at the same 
geographical location. To analyse their characteristics and repercussions on the battery 
storage unit operations, the scheduling algorithm versions are based on the chronological 
location of the DLFM. 

 

3.4.1 R-DLFM architecture 

In the R-DLFM market setup, the proposed flexibility market follows the DAM. The sequence 
continues with the IDM and, finally, the BM as a penalization instrument for the deviations 
from the market schedule. Accordingly, the level of available information differs from one 
market to another. The DAM schedule needs to be decided without knowing the prices in 
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any of the markets, while the bidding strategy in the R-DLFM is determined with the DAM 
cleared price and quantity information. Battery storage operation in the IDM is planned 
knowing both the DAM and the R-DLFM prices, whereas trading in the BM is merely a 
consequence of the actions in the previous markets. The battery storage unit operator’s 
optimal bidding in the DAM, R-DLFM, IDM and BM markets is formulated as follows: 

Max
𝜔

∑((𝑑𝑖𝑠𝑡
𝐷𝐴 − 𝑐ℎ𝑡

𝐷𝐴) ∙ ∑(𝜋𝑠 ∙ 𝜆𝑠,𝑡
𝐷𝐴)    +

𝑆

𝑠

𝑇

𝑡=0

 

∑[(𝑓𝑠,𝑡
↑ ∙ ∑ 𝜋𝑠,𝑘 ∙ 𝜆𝑠,𝑘,𝑡

𝑓𝑙𝑒𝑥↑
) − (𝑓𝑠,𝑡

↓ ∙ ∑ 𝜋𝑠,𝑘 ∙ 𝜆𝑠,𝑘,𝑡
𝑓𝑙𝑒𝑥↓

)]

𝐾

𝑘

 + 

𝐾

𝑘

𝑆

𝑠

 

∑ ∑(𝜋𝑠,𝑘 ∙ 𝜆
𝑠,𝑘,𝑡

𝐼𝐷𝑎𝑣𝑔
∙ (𝑑𝑖𝑠𝑠,𝑘,𝑡

𝐼𝐷 − 𝑐ℎ𝑠,𝑘,𝑡
𝐼𝐷 ))

𝐾

𝑘

+  ∑ 𝜋𝑠,𝑘 ∙ (−𝑑𝑒𝑣𝑠,𝑘,𝑡
↑ ∙ 𝜆𝑠,𝑘,𝑡

𝐵𝑀,↑ − 𝑑𝑒𝑣𝑠,𝑘,𝑡
↓ ∙ 𝜆𝑠,𝑘,𝑡

𝐵𝑀,↓)

𝑆

𝑠

𝑆

𝑠

 

− Max
𝑏𝑠,𝑘,𝑡

∑ ∑ 𝜋𝑠,𝑘,𝑡(𝑐ℎ𝑠,𝑘,𝑡
𝐼𝐷 − 𝑑𝑐ℎ𝑠,𝑘,𝑡

𝐼𝐷

𝑡

) ∙ 𝛿𝜆𝑠,𝑘,𝑡
𝐼𝐷

𝑠

∙ 𝑏𝑠,𝑘,𝑡 

𝑠. 𝑡. ∑ 𝑏𝑠,𝑘,𝑡 ≤ Γ

𝑡

, 0 ≤ 𝑏𝑠,𝑘,𝑡 ≤ 1, ∀s, k, t            (1) 

 

Subject to: 

𝑓𝑠,𝑡
↑ ≤ �̅�𝑠,𝑡

↑ , ∀s, t   (2)  

𝑓𝑠,𝑡
↓ ≤ �̅�𝑠,𝑡

↓ , ∀s, t   (3)  

𝑑𝑖𝑠𝑡
𝐷𝐴 − 𝑑𝑒𝑣𝑠,𝑘,𝑡

↓ ≤ �̅�𝑑𝑐ℎ ∙ 𝑥𝑡, ∀t   (4)  

𝑐ℎ𝑡
𝐷𝐴 − 𝑑𝑒𝑣𝑠,𝑘,𝑡

↑ ≤ �̅�𝑐ℎ ∙ (1 − 𝑥𝑡), ∀t   (5)  

𝑑𝑖𝑠𝑠,𝑘,𝑡
𝐼𝐷 ≤ �̅�𝑑𝑐ℎ ∙ 𝑥𝑡

𝐼𝐷, ∀s, k, t   (6)  

𝑐ℎ𝑠,𝑘,𝑡
𝐼𝐷 ≤ �̅�𝑐ℎ ∙ (1 − 𝑥𝑡

𝐼𝐷), ∀s, k, t   (7)  

𝑓𝑠,𝑡
↑ ≤ 𝑃𝑚𝑎𝑥,𝑑𝑐ℎ + 𝑐ℎ𝑡

𝐷𝐴 − 𝑑𝑒𝑣𝑠,𝑘,𝑡
↓ + 𝑐ℎ𝑠,𝑘,𝑡

𝐼𝐷 − 𝑑𝑖𝑠𝑡
𝐷𝐴 + 𝑑𝑒𝑣𝑠,𝑘,𝑡

↑ − 𝑑𝑖𝑠𝑠,𝑘,𝑡
𝐼𝐷 , ∀s, k, t   (8) 

𝑓𝑠,𝑡
↓ ≤ 𝑃𝑚𝑎𝑥,𝑐ℎ + 𝑑𝑖𝑠𝑡

𝐷𝐴 − 𝑑𝑒𝑣𝑠,𝑘,𝑡
↑ + 𝑑𝑖𝑠𝑠,𝑘,𝑡

𝐼𝐷 − 𝑐ℎ𝑡
𝐷𝐴 + 𝑑𝑒𝑣𝑠,𝑘,𝑡

↓ − 𝑐ℎ𝑠,𝑘,𝑡
𝐼𝐷 , ∀s, k, t   (9) 

𝑔𝑠,𝑘,𝑡 = 𝑐ℎ𝑡
𝐷𝐴 − 𝑑𝑒𝑣𝑠,𝑘,𝑡

↓ + 𝑐ℎ𝑠,𝑘,𝑡
𝐼𝐷 + 𝑓𝑠,𝑡

↓ − 𝑑𝑖𝑠𝑡
𝐷𝐴 + 𝑑𝑒𝑣𝑠,𝑘,𝑡

↑ − 𝑑𝑖𝑠𝑡
𝐼𝐷 − 𝑓𝑠,𝑡

↑ , ∀s, k, t   (10) 

𝑔𝑠,𝑘,𝑡 = 𝑐𝑠,𝑘,𝑡 − 𝑑𝑠,𝑘,𝑡, ∀s, k, t   (11) 

𝑐𝑠,𝑘,𝑡 ≤ �̅�𝑐ℎ ∙ 𝑥𝑠,𝑘,𝑡 , ∀s, k, t   (12) 

𝑑𝑠,𝑘,𝑡 ≤ �̅�𝑑𝑐ℎ ∙ (1 − 𝑥𝑠,𝑘,𝑡), ∀s, k, t   (13) 

𝑠𝑜𝑒𝑠,𝑘,𝑡 = 𝑠𝑜𝑒𝑠,𝑘,𝑡−1 + 𝑐𝑠,𝑘,𝑡 ∙ 𝜂𝐸 − 𝑑𝑠,𝑘,𝑡 , ∀s, k, t   (14) 

0 ≤ 𝑠𝑜𝑒𝑠,𝑘,𝑡 ≤ 𝐶𝐸 , ∀s, k, t   (15) 

𝑠𝑜𝑒𝑠,𝑘,24 > 𝑆𝑂𝐸𝑠,𝑘,0,   ∀s, k, (16) 

𝑠𝑜𝑒𝑠,𝑘,𝑡 = ∑ 𝑠𝑜𝑒𝑡,𝑖,𝑠,𝑘,   ∀s, k, t   (17)

𝐼−1

𝑖=1

 

𝑠𝑜𝑒𝑡,𝑖,𝑠,𝑘 ≤ 𝑅𝑖+1 − 𝑅𝑖 , ∀s, k, i, t   (18) 

∆𝑠𝑜𝑒𝑠,𝑘,𝑡 = 𝐹1 + ∑
𝐹1+1 − 𝐹𝑖

𝑅𝑖+1 − 𝑅𝑖
∙ 𝑠𝑜𝑒𝑡−1,𝑖,𝑠,𝑘 ,    ∀s, k, i, t   (19)

𝐼−1

𝑖=1

 



41 

 

𝑐𝑠,𝑘,𝑡 ≤
∆𝑠𝑜𝑒𝑠,𝑘,𝑡

∆𝑡ℎ ∙ 𝜂𝐸
, ∀s, k, t   (20) 

 

The objective function (1) follows the chronological order of the markets and information 
availability, taking into account the price uncertainties. The set of variables is: 

𝜔 = 𝑑𝑖𝑠𝑡
𝐷𝐴, 𝑐ℎ𝑡

𝐷𝐴, 𝑓𝑠,𝑡
↑ , 𝑓𝑠,𝑡

↓ , 𝑑𝑖𝑠𝑡
𝐼𝐷 , 𝑐ℎ𝑡

𝐼𝐷, 𝑑𝑒𝑣𝑠,𝑘,𝑡
↑ , 𝑑𝑒𝑣𝑠,𝑘,𝑡

↓ , 𝑏𝑠,𝑘,𝑡 , 𝑥𝑡
𝐷𝐴, 

𝑥𝑠,𝑘,𝑡
𝐼𝐷 , 𝑥𝑠,𝑘,𝑡 , 𝑔𝑠,𝑘,𝑡, 𝑐𝑠,𝑘,𝑡 , 𝑑𝑠,𝑘,𝑡 , 𝑠𝑜𝑒𝑠,𝑘,𝑡 , 𝑠𝑜𝑒𝑡,𝑖,𝑠,𝑘 , ∆𝑠𝑜𝑒𝑡𝑠,𝑗,𝑡 

 

The first term in (1) represents the DAM charging (𝑐ℎ𝑡
𝐷𝐴) and discharging (𝑑𝑖𝑠𝑡

𝐷𝐴) schedule 
that needs to be decided before knowing the DAM prices. Probabilities  𝜋𝑠 weigh the DAM 
price scenarios 𝜆𝑠,𝑡

𝐷𝐴 to obtain the expected DAM price. The second row reflects the flexibility 

market, whose prices depend on the realized DAM price clearing scenario s, deciding the up 

and down flexibility (𝑓𝑠,𝑡
↑ , 𝑓𝑠,𝑡

↓ ).  The third row models the IDM, which clears after the DAM 

and the R-DLFM. Due to the nature of the IDM (it is not an auction based, but a continuous 
pay-as-bid market), instead of relying on stochastic optimization, we employ the robust 
optimization, which reflects the confidence in the IDM bidding actions. Since the IDM is pay-
as-bid with continuous trading, there is no single market clearing IDM price. In other words, 
the traded price differs in time up to the cut-off time, usually 15 or 30 minutes before the 
delivery time. Because of this, we find scenarios that relate IDM prices throughout all hours 
inappropriate and utilize robust optimization, which models the skilfulness (and luck) of the 
battery storage operator. In the objective function (1) the fifth and the sixth rows represent 
the robust sub-problem which is then transformed to its dual form, converting the inner 
problem to a minimization problem. The inner minimization problem can then be omitted as 
the outer maximization of the objective function and inner negative minimization have the 
same optimization direction. In a nutshell, robust optimization2 tries to inflict as much 

damage as possible, meaning that for an average IDM price from the third term 𝜆
𝑠,𝑘,𝑡

𝐼𝐷𝑎𝑣𝑔
, the 

robust optimization adds or subtracts value  𝜆
𝑠,𝑘,𝑡

𝐼𝐷𝑎𝑣𝑔
 in the direction that it worse for the 

overall objective function. This means that if a battery storage is buying energy at a specific 
time period in the IDM, the price would be higher than average, and if it is selling the energy, 
the price would be lower. Parameter Γ is the budget of uncertainty that determines how 
many of the total observed time units will be affected by the robust optimization. If, out of 
24 observed time periods, Γ equals 7, only seven worst possible time periods will be affected. 
On the other hand, setting Γ to 0 creates an optimistic case where no robust optimization is 
considered, but only the average prices, which is equivalent to the deterministic approach. 
Binary variable 𝑏𝑠,𝑘,𝑡  must be lower or equal to the budget of uncertainty (Γ). Lastly, the 

fourth row in objective function (1) represents leveling the market positions in the BM. As 
the realization of actions in this market is considered as a consequence of the previous 
actions (i.e. deviations from the schedule), the BM is not considered as a separate stage, thus 
the model complexity is somewhat relaxed.  

 

 

                                                        
2 ] B. L. Gorissen, I. Yanikoglu, and D. den Hertog, “A practical guide to robust optimization,” Omega, vol. 53, pp. 
124—137, June 2015. 
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Figure 22 - R-DLFM concept decision stages 

 

Figure 22 illustrates the above-described three-stage market setup considering the 
chronological order of the market clearing times and scenario branching. Please note that 
the IDM prices are generated as a robust uncertainty set, so for each scenario they may be 

in the range < 𝜆
𝑠,𝑘,𝑡

𝐼𝐷𝑎𝑣𝑔
− 𝛿𝜆𝑠,𝑘,𝑡

𝐼𝐷 , 𝜆
𝑠,𝑘,𝑡

𝐼𝐷𝑎𝑣𝑔
+ 𝛿𝜆𝑠,𝑘,𝑡

𝐼𝐷 > and the BM is a consequence rather than a 

separate stage. Description of the variables and parameters used in the model is available in 
the table belove. For better understanding, the parameter names in the model are in regular 
font, while the variable names are in italic. Constraint (2) denotes the maximum upward 
flexibility needed in each scenario and hour, while (3) does the same but for the downward 
flexibility. The DAM battery storage discharging, and charging are limited by the respective 
maximum discharging and charging powers in (4) and (5), considering binary variable 𝑥𝑡

𝐷𝐴 
that forbids simultaneous charging and discharging. In the same manner, charging and 
discharging process in the IDM is modelled by constraints (6) and (7). The available flexibility 
power capacity, depending on the activities in the DAM and IDM, is constrained in (8) for the 
upward direction, and in (9) for the downward direction. The purpose of the flexibility 
constraints is to restrict flexibility in each direction to the physically available capacities. It 
takes into consideration the maximum charging/discharging power and activities planned in 
other markets. For example, if down flexibility is needed and discharging activities in the DAM 
and IDM are planned, the battery storage may provide down reserve capacity that exceeds 
its power rating as a portion of the down reserve is provided by simply reducing the planned 
discharging quantity in the DAM and IDM, and, on top of that, the battery storage can start 
charging up to its full power capacity. Equation (10) calculates the battery’s net 
charging/discharging activity considering all markets where it participates, including the 
deviations at the balancing stage. Constraint (11) connects the net battery activity with its 
physical charging and discharging processes. Variable 𝑐𝑠,𝑘,𝑡  in constraint (12) limits the 

battery’s overall charging activity to its rated power, while constraint (13) does the same for 
the discharging variable 𝑑𝑠,𝑘,𝑡. Equation (14) models the battery’s state of energy (soe) during 

the observed period depending on actions in all the markets. State of energy is constrained 
with the lower and the upper bound in (15). Constraint (16) ensures that state of energy at 
the end of the observed period is not below the state of energy at the beginning of the 
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observed period. Constraints (17)– (20) model the battery charging capacity acknowledging 
the fact that the battery charging ability reduces as its state of energy increases due to 
entering the constant-voltage phase of the charging process. More information on this 
process and the model is available in [14]. Variable 𝛿𝑠𝑜𝑒𝑡,𝑠denotes the maximum amount of 

energy that can be charged into the battery in a single time step depending on its state of 
energy. This dependence is obtained from measuring the battery charging characteristic in a 
laboratory. Since this characteristic is nonlinear, it is approximated by a piece-wise linear 
function that results with fitting parameters 𝑅𝑖  and 𝐹𝑖. In that manner, state of energy is 
decomposed into I − 1 segments, where I stands for the number of breakpoints of the 
piecewise function (constraint (17)). Constraint (18) limits the energy of each linear segment,  

while (19) determines the maximum energy charging ability of the respective battery at each 
time period. Finally, (20) is the maximum charging power constraint. 

 

Table 1 - Parameters and variables for R- and P-DLFM setup 
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3.4.2 P-DLFM architecture 

The objective function and the associated constraints in the P-DLFM model share the same 
methodology and form as the R-DLFM. The main difference is that, in contrast to the R-DLFM 
setup described in the previous subsection, in the P-DLFM market setup the flexibility market 
precedes the DAM. Although each market is modelled following the same principles as in the 

R-DLFM market setup, the chronological order changes. To present the P-DLFM in concise 
but understandable manner,  

Table 1 lists all variables and parameters used in both market setups. For the sake of clarity, 
indices for all variables and parameters are listed in the table chronologically. For instance, 
although variables with sets of indices s, k, t and k, s, t are identical in mathematical sense, 
we explicitly follow the chronological order to emphasize the order of market clearings. 
Moreover, the objective function (21) is explicitly written to emphasize the differences:  

Max
𝜔

∑((𝑑𝑖𝑠𝑘,𝑡
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𝑏𝑠,𝑘,𝑡
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𝑠
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𝑠. 𝑡. ∑ 𝑏𝑘,𝑠,𝑡 ≤ Γ

𝑡

, 0 ≤ 𝑏𝑘,𝑠,𝑡 ≤ 1, ∀s, k, t            (21) 

By comparing the R-DLFM setup cost function (1) and the P-DLFM cost function (21), there 
are two major differences: i) Information availability for the DAM and the x-DLFM differs, and 

ii) probability coefficients differ. The DAM is in the starting point of the R-DLFM stochastic 
tree, hence the DAM price probabilities include only the first branching 𝜋𝑠, while the R-DLFM 

price is dependent on the first and second branching. In the P-DLFM setup, the situation is 
opposite and P-DLFM is at the starting point, hence the flexibility prices have probabilities 

𝜋𝑘, while the DAM prices depend on two levels of branching, represented by 𝜋𝑘,𝑠. Figure 24 

depicts the chronological market clearing times in the P-DLFM setup. By comparing figures 
22 and 24 it is easy to notice how different information availability affects the potential 

market actions. For instance, in the P-DLFM setup, the flexibility up and down variables are 
optimized without any price information, and they fit all future possible scenario realizations, 

while in the R-DLFM case the flexibility up and down variables are optimized after the DAM 
clearing. Thus, for each realization of the DAM price scenario, different values of flexibility 

variables are calculated. The IDM and BM are in fact the same in both market setups 
regarding the availability of information because the DAM and flexibility market prices are 

always known prior to the IDM and BM actions. For the sake of brevity, we assume that 
figures 22 and 24 alongside constraints listed in the section in the  

Table 1 generate enough information so the reader may understand also the P-DLFM 
formulation. The main and only difference lies in the temporal dependency between the 
consequent market clearing times. The differences between two setups are analysed in a 
more detailed manner in the following subchapter. 
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Figure 23 - P-DLFM concept decision stages 

 

3.5.1 General setup and input data 

The Republic of Croatia was chosen for the case study for a number of reasons. First, as 
Croatia heavily relies on tourism (especially coastal parts), the number of people staying on 
islands increases by more than a factor of two comparing the winter and summer season. 
This results in considerable differences in power demand (both because of the number of 
inhabitants and the weather conditions) and different network capacity requirements. 
Considering the business-as-usual, without some type of flexibility market, the local 
distribution system operator is forced to oversize the network capacity with respect to the 
winter needs, so the power demand during the peak summer hours can be met. Second, 
Croatia was chosen because of availability of the DAM, IDM and BM prices. However, the 
DLFM does not yet exist in Croatia, so the prices were manually generated. The DAM and 
IDM price from the Croatian Power Exchange (CROPEX) are used, while the BM prices are 
based on the current regulations in Croatia and they were fetched from the ENTSO-E 
Transparency Platform. The same market data and battery characteristics are used for both 
the R-DLFM and P-DLFM setups. Table 2 summarizes the input prices for the DAM, IDM, BM 
and DLFM. The DAM, BM and DLFM use two price scenarios each. Although the model is 
computationally highly tractable, we opt for a low number of scenarios to better illustrate 
the mechanics of the model and better illustrate the results. The likelihood of occurrence of 
each scenario at the first level of branching is the same, i.e. in the R-DLFM market setup each 
DAM price scenarios has 50% probability, while in the P-DLFM case the same principle is valid 
but for the PDLFM prices, as P-DLFM is chronologically the first market to be cleared. In the 
second stage, further scenarios do not have the same probabilities. The price scenarios closer 
to the prices from the previous stage have 80% probability, while the other scenario has 20%. 



46 

 

The third market in chronological order is the IDM, which is not modeled via scenarios, but 
using an uncertainty range, i.e. all prices in between the upper one and the lower one can 
occur. The occurrence depends on the preset uncertainty budget. In the final stage, the BM 
prices are a direct consequence of the realized DAM prices. The considered battery storage 
has 5 MWh / 5 MW capacity. The round-trip efficiency is 0.81. Regarding the flexibility needs 
listed in Table 3, the distribution system needs to procure either upward or downward 
flexibility, as both directions are never needed at the same time. Positive values indicate the 
upward flexibility need, while the negative ones are for the downward flexibility request. 

 

Table 2 - Prices in different markets [€/MWh] 

 
 

Table 3 - Flexibility needs in the DLFM 

3.5.2 Model validation 

The R-DLFM and P-DLFM market setups are modelled in the same manner to make 
comparable results. Depending on the chosen budget of uncertainty in the IDM, activities in 
markets change and, consequently, overall profits differ. Prior to the analysis on how 
different Γ values affect the battery storage’s strategy and revenue, the models’ validation 
and explanation is conducted with the value of budget of uncertainty zero, i.e. perfect 
foresight of the expected IDM trading success. Figures 25 and 26 show the battery’s state of 
energy (SOE) and net charging/discharging activities for both market setups. The battery 
starts and ends the observed time horizon with the same SOE for all scenarios due to 
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constraint (16). Figure 25 illustrates only the net battery activity described with the equation 
(10) that summarizes all market activities, so a more in-depth analysis of the activities in  

 
Figure 24 - State of energy during the observed time horizon with Γ = 0 

 

 
Figure 25 - 5. R-DLFM and P-DLFM battery activity (charging and discharging during the 

observed time horizon with Γ = 0) 

 

different markets is needed to explore the arbitrage between markets within the same time 
periods. For the R-DLFM market setup, in all scenarios the battery is charged in hour 3, whose 
prices in all markets and scenarios are at the lower range as compared to the rest of the hours 
(see Table 1). In the same manner, the battery storage takes advantage of the high energy 
prices in all markets and discharges the battery in hour 8. Until the end of the day, the battery 
operation scheme follows the described strategy. Although in some hours the battery SOE 
stands still (it is constant), energy arbitrage between different markets produces profit and 
is conducted in a way that the amount of energy purchased in one market equals the energy 
sold in another. Inter-market arbitrage is highly beneficial for the battery as it does not incur 
any energy loss due to roundtrip inefficiency nor it degrades the battery capacity. Regarding 
the P-DLFM market setup, the same principles are valid as in the R-DLFM case but with the 
major difference that the P-DLFM clearing precedes the DAM clearing. Hence, the battery 
storage operator has different information availability and stochastic scenario tree structure, 
which leads to a somewhat different SOE profile. In the P-DLFM case, the battery’s physical 
activity is much more expressed and there is a larger discrepancy between the scenario 
schedules than in the R-DLFM setup (graphs to the right in Figures 25 and 26). This is related 
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to the fact that the P-DLFM prices are very attractive in comparison to the other markets, so 
as this market clears first, the battery storage operator’s optimal strategy is to physically 
charge and discharge the battery exploiting the price differences within the DLFM market, 
while inter-market arbitrage is secondary source of revenue. To examine the process of 
energy arbitrage deeper, Figures 27 and 28 focus on only one stochastic tree branch in the 
RDLFM market setup with the Γ value set to 0. Scenario [0,0] includes the high DAM, IDM, 
BM and R-DLFM prices listed in Table 1. The prices in all markets in Figure 27 follow the same 
trend, but with different amplitudes and ranges. 

 

 
Figure 26 - Prices in different markets for scenario [0,0] 

 

In terms of arbitrage, hour 5 clearly demonstrates the intermarket arbitrage. The overall net 
battery activity equals 0, however, an arbitrage is happening between the DAM and the IDM. 
In hour 5, the IDM price is 27 C/MWh, while in the DAM 39.93 C/MWh (48% higher than the 
IDM price!). Figure 28 indicates that in hour 5 maximum charging is performed in the DAM 
and maximum discharging in the IDM. Thus, the profit is achieved without even physically 
using the battery. The DAM can be used in R-DLFM to provide larger capacity in the DLFM. In 
hour 9 the net battery activity results in the maximum discharging power, i.e. 5 MW, 
motivated by the flexibility up demand. As the SOE cannot go under 0, the DAM was used to 
acquire enough energy so the battery can participate in the R-DLFM with 10 MW, which is 
double its power capacity. Thus, the up flexibility is achieved by cancelling the charging 
process at 5 MW scheduled in the DAM and instead discharging the battery at 5 MW. The 
described actions in hours 5 and 9 indicate that battery storage gains major benefit by acting 
in different markets and performing inter-market arbitrage, which generates a significant 
profit and results in trading power capacities higher than the actual battery capacity. 
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Purchasing energy in one market and then selling it in the other may result in zero, or at least 
lowered, actual battery charging/discharging, which extends the battery’s lifetime. In other 
words, the battery operator sells energy in a market with higher price, while it buys it in the 
market with lower price in the same time period. Different scenarios bring different price 
relationships (differences) between markets, but in the end, the model follows exactly the 
same principles as shown in this example. 

 
Figure 27 - Market activity for scenario [0,0] (positive values represent battery storage 

charging) 

 

3.5.3 Uncertainty budget analysis 

Figures 29 and 30 show that the battery storage’s expected profit decreases with the increase 
of the uncertainty budget, i.e. as the IDM prices during more time periods are damaged by 
the robust optimization. More specifically, the IDM prices are less favourable when both 
buying and selling energy, thus effectively reducing the battery storage actions in this market. 
Due to the reduced profit opportunities, the overall profit also reduces with the increasing 
values of the uncertainty budget. Having in mind that the same data set was used in both 
market setups (R-DLFM and P-DLFM), it is highly interesting to notice that the P-DLFM setup 
generates higher overall profits for the profit-oriented battery storage. For Γ = 0, the R-DLFM 
profit is 1518€, while for the PDLFM 1589€ (4% higher profit). Although R-DLFM has the perk 
of easier integration into the existing power market structure, the P-DLFM setup has higher 
economic benefits to independent battery storage. This should be considered when opting 
for one of these two setups to be implemented in real-life systems. The maximum value of 
the uncertainty budget is 24, i.e. all of the observed hours are then affected by unfavourable 
IDM prices. In that case, the profit in the RDLFM sinks to 1079€ (29 % decrease compared to 
the case when Γ = 0) and to 1148€ in the P-DLFM (28 % decrease compared to the case when 
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Γ = 0). Furthermore, comparing the R-DLFM and P-DLFM market setup when Γ = 24, 
somewhat above 6% is higher profit for battery storage is achieved in the latter market setup. 
Next, we analyse the behaviour of the battery storage in the DAM and the IDM for both 
market setups. Figure 31 illustrates similar trends both for the R-DLFM and the P-DLFM 
setups. As the uncertainty budget increases, the overall discharged, i.e. sold, energy in the 
IDM decreases because the prices are becoming less favourable. The expected energy sold 
in the IDM in the R-DLFM setup throughout the day decreases from 71 MWh for Γ = 0 to 30 
MWh for Γ = 24 (decrease of around 58%). In the P-DLFM setup the energy discharged in the 
IDM decreases from 61 MWh for Γ = 0 to 31 MWh for Γ = 24 (decrease of around 50%). Thus, 
for Γ = 0 the battery storage participates with higher amount of energy in the IDM in the R-
DLFM case than in the P-DLFM case, however, the DAM charging (buying) activities are pretty 
similar (R-DLFM: 82 MWh, P-DLFM: 83 MWh). This is in line with the results presented in 
Figure 26 and the thesis that the inter-market arbitrage is much more emphasized in the R-
DLFM setup. Furthermore, the DAM charging activity decreases in both cases with increasing 
uncertainty budget. In the R-DLFM setup the decrease is from 82 MWh to 55 MWh (33%), 
while in the P-DLFM setup the decrease is from 83 MWh to 61 MWh (27%). These results 
demonstrate that the effect of unfavorable IDM prices is more detrimental to the R-DLFM 
arbitrage strategy. Also, the IDM charged energy sinks in the R-DLFM setup from around 21 
MWh to 14 MWh (33% decrease), while in the P-DLFM setup the reduction is from 25 MWh 
to 19 MWh (24%). One of the most important reasons why markets may face such notable 
decline in the battery activities for higher Γ values is the fact that the battery does not have 
any lower bounds on the energy that it has to deliver, so the battery operator strictly follows 
the strategy that brings the highest profit without any obligations besides the reported 
charging/discharging schedule. The DA discharging in both cases increases with the higher 
budget of uncertainty for over 30%. When it comes to the battery activity in the DLFM 
markets, Figures 32 and 33 show that P-DLFM setup stimulates higher utilization of flexibility 
service in comparison to the R-DLFM, regardless on the IDM uncertainty budget. Hence, 
when designing a new market structure, the trade-off will be between the ease of the 
integration (R-DLFM) and more intense activities in the local flexibility markets (P-DLFM). For 
both market setups the battery storage participation in the DLFM is inelastic to the values of 
the uncertainty budget, i.e. both up and down flexibility provision is (almost) identical 
regardless on the value of Γ. Very attractive DLFM prices used in this case study are the main 
reason for the battery storage’s interest in the DLFM. However, comparing the RDLFM and 
P-DFM market setups, both flexibility up and down service provision is at least double in the 
P-DLFM market setup than in the R-DLFM, although the demand and prices are the same in 
both cases. Moreover, out of the total demand, the expected up flexibility service provided 
by the battery storage in the R-DLFM setup is 41%, while in the PDLFM setup it accounts for 
83%. The explanation for this is that the P-DLFM precedes all the other markets. For 
completeness, we mention the battery storage activity in the BM. Both for the R-DLFM and  
P-DLFM setups the battery activity is zero. The BM costs are so high that by all means in both 
market setups the battery storage tries to avoid the BM corrections to its market position. 
However, if the DLFM prices would increase, the battery storage operator might receive an 
incentive to deviate. We conclude the case study with graphs that depicts the overall 
charging and discharging activities depending on the uncertainty budget. Figure 34 shows the 
overall charged and discharged energy quantity during the day for all possible values of the 
uncertainty parameter Γ in the R-DLFM and P-DLFM setups. There is a constant difference 
between the charging and the discharging quantities in the graphs due to battery inefficiency. 
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In the R-DLFM graph there is no clear trend to relate the charging/discharging energy and the 
budget of uncertainty. On the other hand, in the P-DLFM setup, an increase in the Γ value 
results in reduced physical charging/discharging energy. 

 

 
Figure 28 - Overall expected profit vs uncertainty budget in the IDM for R-DLFM 

 

 
Figure 29 - Overall expected profit vs uncertainty budget in the IDM for P-DLFM 
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Figure 30 - DAM and IDM activity for R-DLFM and P-DLFM market setups in regards to the 

value of the uncertainty budget in the IDM 

 

 

Figure 31 - Flexibility actions vs uncertainty budget R-DLFM 
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Figure 32 - Flexibility actions vs uncertainty budget P-DLFM  

 

 

 
Figure 33 - R-DLFM and P-DLFM charging and discharging activity depending on the 

uncertainty budget 

 

Focus of interest in the FLEXGRID UCS 2.1 is the development of a scheduling algorithm that 
results with lower OPEX for a profit-oriented ESP, considering existing markets and the 
proposed DLFM. To make the model truly credible, special attention has been given both to 
the uncertainty and battery modelling. Different markets have different clearing 
characteristics, hence different uncertainty aware techniques have been used – stochastic 
optimization for pay-as-clear systems and robust optimization for the case where trading is 
conducted continuously. Two types of DLFM were addressed as part of the FLEXGRID UCS 
2.1. The R-DLFM is cleared between the DA and the ID markets, while the P-DLFM precedes 
the DAM. According to current legislative situation, R-DLFM is certainly a better fit to the 
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current power market structures concerning the complexity of integration. But the question 
was also which market setup would ESP potentially benefit from the most. Analysing these 
two market setups, P-DLFM provides greater profit potential to the respective profit-oriented 
player. An important factor that also needs to be explored in detail is the price formation for 
the flexibility market. Nonetheless, the developed model helps the profit-oriented ESP to 
increase its profit and exploit the benefits offered by the wide variety of currently active 
markets and potential ones at the distribution level. Throughout the whole process, many 
questions have been raised, many models have been analysed and we attach short list of 
lessons learnt that have potential for further investigation in some future R&I initiatives.  

 

Table 4 - Lessons learnt for UCS 2.1 

Lesson learnt Research & Business insights 

R-DLFM is the “best-fit” to the existing 
market structure, but other market 
setups may result to greater benefit 
for a profit-oriented ESP 

Although R-DLFM seems like the best option when 
considering the potential solutions for the creation 
of the distribution level market, important factor 
to consider is also what entities and in what 
volume do benefit from different market 
structures. Because, for a potential distribution 
level market to be even considered by industry, 
involved partners should have a financial initiative 
to be involved in something new. Hence, both 
FLEXGRID and future projects need to decide the 
optimal solution considering all factors.   

Need for precise battery modelling The value of proposed scheduling algorithm may 
be heavily impacted by unreliable battery 
modelling techniques. Moreover, wherever 
battery storages are used, precise state of energy 
dynamics is of a great importance for the results. 
Hence, as part of this UCS, advanced battery 
modelling technique was used, but research 
should be conducted also in the future. Perhaps 
even more precise modelling techniques may be 
developed.  

Attractive flexibility prices may 
overcome market architecture 
dilemmas  

The results have shown that, depending on the 
flexibility market prices, although overall ESPs’ 
benefit may differ, activity in the flexibility market 
may be pretty much consistent. Hence, should the 
decision makers opt for the R-DLFM due to 
integration simplicity, emphasis should be given to 
the price formation. Nevertheless, further 
research should investigate price formation 
possibilities and mechanisms.  

Scope of the markets included in the 
model changes the perspective 

UCS 2.3 has included three existing markets in 
addition to the proposed x-DLFM. Further 
research should perhaps broaden the scope and 
then analyze the trade-off between the 
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computational (and modelling) burden and 
credibility of results.  
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4  ESP’s CAPEX minimization problem (UCS 
2.2) 

The focus of this chapter is the research problem of the FLEXGRID’s HLUC#2 UCS#2 
(HLUC02_UCS_02). We consider a profit-seeker Energy Service Provider (ESP) as the main 
subject of the capital expenditures (CAPEX) optimization problem. To optimize CAPEX, the 
ESP needs to conduct optimal investments on RES and FlexAssets, both in terms of siting and 
sizing. The holistic network-aware approach takes into consideration: 

 Various electricity markets 
 Network topology and constraints or DSO’s zone approach as in the NODES example 
 Detailed study of various battery types (their characteristics such as 

charging/discharging efficiency, etc.) 
 RES generation forecasts 
 Market price forecasts 

 

Respecting the given objective function (e.g. 5% operational expenditure (OPEX) reduction), 
the optimal siting and sizing algorithm ensures the optimal investment strategy. 

Optimal CAPEX strategy may present important comparative advantage over the rival 
companies. Furthermore, optimal resource allocation may benefit the overall social welfare, 
assuming that the greater competition raises market efficiency and that the greater number 
of players will have the opportunity to enter the market and increase the competition with 
each other. In that sense, a profit-seeker ESP, whose portfolio may consist of various 
controllable and uncontrollable assets, uses CAPEX minimization tool to determine optimal 
investment strategy in terms of: i) size and ii) location of the different assets to fulfil its own 
goals and network requirements. Within FLEXGRID project’s context, optimal sizing and siting 
algorithm is used to ensure optimal investment strategy considering the given constraints 
and the objective function. In addition to the existing markets, the development of a DLFM 
is proposed and its influence on ESP’s market behaviour alongside the conventional power 
markets is observed. Taking into account possible actions on all of the observed markets 
(DAM, RM, DLFM and BM), CAPEX minimization algorithm proposes the optimal investment 
strategy to participate in the energy market(s) in a preferrable fashion. Meaning that for a 
specific one-time capital investment, operational expenses may be reduced. 
 

This work proposes a market architecture in which DLFM follows the clearing process of the 
DAM and RM, without changing the existing transmission-level wholesale market structure 
(as shown in the figure below). Although the emphasis is on the investment in new 
FlexAssets, as CAPEX strategy is highly OPEX dependent, so the market behaviour also needs 
to be modelled. Thus, it is important to explain the proposed market structure. The ESPs will 
need to balance their portfolio on the BM if by participating in the DLFM they alter dispatch 
of the TSO-level markets. In this context, an ESP may participate in all the aforementioned 
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markets under the Reactive DLFM (R-DLFM) architecture model. Figure 35 clearly illustrates 
how Reactive DLFM (R-DLFM) fits with the existing EU regulatory framework. That is the main 
reason why is the R-DLFM considered, and why it was decided to implement UCS 2.2 until 
TRL 5 via the deployment of FLEXGRID ATP. The sequence of the existing markets remains as 
is and no regulatory changes are required. The only new market is the DLFM, which reacts to 
the dispatch decisions made by the previous DAM and RM in order to deal with the 
distribution-level related problems such as local congestion and voltage control issues. Figure 
35 shows the clearing sequence of the mentioned markets, interaction between them 
entities and transmission/distribution level that are in regards with them. More technical 
details are provided in chapter 5.  

 
Figure 34 - Proposed system model of the UCS 2.2 

 

 
Figure 35 - Placement of UCS 2.2 mathematical model and algorithm in the Reactive DLFM 

architecture proposed by FLEXGRID 
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The ESP’s CAPEX minimization problem is modelled as a single-level optimization problem 
with network constraints taken into account. The ESP wants to reduce its day-to-day 
operational costs by investing in new FlexAssets. More precisely, the CAPEX is highly 
dependent on the given OPEX reduction goals (e.g. 5%). The model is network aware, but 
with the important notice that the ESP’s accessibility to the underlying network data may 
vary according to the will of the DSO and/or the regulatory framework constraints. In that 
manner, we greatly rely on NODES’3 zone approach technique, where the whole distribution 
zone is divided into multiple zones and with relevant information (input data) revealed to the 
ESP. Due to somewhat longer period of formulating the final algorithmic solution and 
computational issues that are still to be resolved with model reformulations, here is 
presented the optimal battery storage siting and sizing solution but without concerning the 
possibility of market participation. Should the ESP have the complete insight into the network 
topology, the following constraints model the AC optimal power flow using the Branch Flow 
Model (BFM) with (1) as the objective function: 
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𝑞𝑖,𝑡 = ∑ 𝑞𝑖,𝑡
𝑔𝑒𝑛

− ∑ 𝑞𝑖,𝑡
𝑑

𝑑
, ∀𝑡, 𝑖 

𝑔
 (7) 

𝑃𝑖
𝑔𝑒𝑛,𝑚𝑖𝑛

∙ 𝑥𝑡
𝑔𝑒𝑛

≤ 𝑝𝑖,𝑡
𝑔𝑒𝑛

≤ 𝑃𝑖,𝑔
𝑚𝑎𝑥 ∙ 𝑥𝑡

𝑔𝑒𝑛
, ∀𝑡, 𝑖       (8) 

𝑄𝑖,𝑡
𝑔𝑒𝑛,𝑚𝑖𝑛

∙ 𝑥𝑡
𝑔𝑒𝑛

≤ 𝑞𝑖,𝑡
𝑔𝑒𝑛

≤ 𝑝𝑖,𝑔
𝑚𝑎𝑥   ∙ 𝑥𝑡

𝑔𝑒𝑛
, ∀𝑡, 𝑖     (9) 

−𝑆𝑖𝑗
𝑚𝑎𝑥 ≤ 𝑆𝑖𝑗,𝑡 ≤ 𝑆𝑖𝑗

𝑚𝑎𝑥 , ∀𝑡, 𝑖, 𝑗     (10) 

𝑣𝑖
𝑚𝑖𝑛 ≤ 𝑣𝑖,𝑡 ≤ 𝑣𝑖

𝑚𝑎𝑥 , ∀𝑡, 𝑖, 𝑗     (11) 

𝑠𝑜𝑒𝑖,𝑡0
= 0.5 ∙ 𝑠𝑜𝑒𝑖

𝑚𝑎𝑥 , ∀𝑡, 𝑖  (12) 

𝑠𝑜𝑒𝑖,𝑇 = 0.2 ∙ 𝑠𝑜𝑒𝑖
𝑚𝑎𝑥 , ∀𝑡, 𝑖 (13)  

𝑐ℎ𝑖,𝑡  ≤  𝑃𝑖
𝑐ℎ,𝑚𝑎𝑥 ∙ 𝑥𝑖,𝑡

𝑏𝑎𝑡𝑡 , ∀𝑡, 𝑖 (14)    

                                                        
3 https://nodesmarket.com/about/  

https://nodesmarket.com/about/
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𝑑𝑐ℎ𝑖,𝑡  ≤  𝑃𝑖
𝑑𝑐ℎ,𝑚𝑎𝑥 ∙ (1 − 𝑥𝑖,𝑡

𝑏𝑎𝑡𝑡), ∀𝑡, 𝑖 (15) 

𝑠𝑜𝑒𝑖,𝑡 ≤ 𝑠𝑜𝑒𝑖
𝑚𝑎𝑥 , ∀𝑡, 𝑖 (16) 

𝑠𝑜𝑒𝑖,𝑡 = 𝑠𝑜𝑒𝑖,𝑡−1 + 𝑐ℎ𝑖,𝑡 ∙ 𝜂 −
𝑑𝑐ℎ𝑖,𝑡

𝜂
  , ∀𝑡, 𝑖 (17)  

 

The objective function in its current form, which still needs to be updated when the 

computational issues are resolved, punishes losses |𝑝𝑖𝑗,𝑡 + 𝑝|  with the penalty factor 𝜆𝑙𝑜𝑠𝑠 , 

accounts for the cost of investment in new battery storage unit according to its maximum 
capacity 𝑠𝑜𝑒𝑖

𝑚𝑎𝑥 ∙ 𝜆𝑏𝑎𝑡𝑡  and includes also possible generation costs of the DERs installed in 
the respective distribution grid (e.g. ESP doesn’t own them and needs to pay some fee) -  

𝑝𝑡
𝑔𝑒𝑛

𝜆𝑔𝑒𝑛. The BFM relaxes the standard model and takes primarily into consideration power 

and electricity flow through branches. Constraint (2) models the active power flow between 
the nodes (including ohmic loss). Generating unit and battery storage unit in the discharging 
mode may inject energy into the system, while demand and battery storage unit in the 
charging mode present load. In similar manner constraint (3) models the reactive power flow. 
𝐼𝑖𝑗  represents squared current value flowing through the branch ij, 𝑝𝒊𝒋 denotes active power 

flow through the branch, 𝑝𝑗
𝑔𝑒𝑛

 is the generation in the node i, 𝑑𝑐ℎ𝑗,𝑡 denotes discharging 

power for the node j, whereas 𝑐ℎ𝑗 charging power and 𝑝𝑗
𝑑  demand.  The last term in (2) 

depicts power flow going in the downstream direction. The notation in (3) follows the similar 
principle as (1), with the addition of shunt susceptance (last term). Constraint (4) determines 
the squared voltage (𝑣𝑖,𝑡) per each node. Constraint (5) in its exact form should be an 

equation rather than an inequality, but such formulation is non-convex, hence, generally 
speaking, unacceptable for today’s solvers. So, the Second-Order Cone Programming (SOCP) 
has been introduced and equality relaxed to inequality which resulted with convex (conic-
shaped) constraint. The constraint itself couples four variables: i) squared current, ii) active 
power flow, iii) reactive power flow and iv) squared voltage. Constraint (6) governs the 
relationship between active, reactive and apparent power. Constraint (7) sum active and 
reactive power and demand, because they are currently not separately represented in the 
equation (3) as it is done in the active power case in the equation (2). Constraints (8)-(11) 
define minimal and maximal allowed values for active power, reactive power, apparent 
power and squared voltage. Binary variable 𝑥𝑖,𝑡

𝑔
 depicts whether a generator is operating (if 

it equals one) or is it turned off in the time unit t. Constraints (12) and (13) regulate state of 
energy (soe) for each battery storage unit in the initial time unit and minimum allowed soe 
at the end of the optimization horizon, respectively.  (14) regulates the maximum charging 

power when battery is in the charging mode (𝑥𝑖,𝑡
𝑏𝑎𝑡𝑡 = 1), in other case it cannot charge. 

Similarly, constraint (15) limits the battery discharging power when the battery is in the 
discharging mode, in other case it cannot discharge. Constraint (17) models the 
intertemporal dependency of the battery’s state of energy – soe in the time unit t dependents 
on the soe in the time unit t-1 and charging/discharging of the battery in t.  
 
Unfortunately, to complete the problem formulation and encompass participation in 
different markets, still some computational issues need to be resolved. Hopefully, all the 
problems will be resolved and fully operational siting and sizing algorithm will be integrated 
as part of the FST in the FLEXGRID ATP. 
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The formulated linear single level problem should be solvable by almost any of the currently 
available solvers. At this stage, the potential problem would present non-convexity of the 
constraint (5) if it was equality. To ensure the convexity of the optimization problem, SOCP 
convex relaxation method was used and conic shaped area produced constrained by (5) 
replaced the non-convex shape which equality version of the constraint insists on. 
Furthermore, significant computational problems have been identified when participation in 
various markets had been included in the model. Hence, the presented problem formulation 
lacks market participation section, but the version integrated in the ATP FLEXGRID as part of 
the FST (TRL 5) will include all the vital functionalities and require reasonable computational 
effort. The final version of the objective function of the optimization problem penalizes both 
CAPEX and multiple OPEX scenarios (according to the capital investments). The algorithm 
reports optimal siting and sizing strategy to satisfy OPEX reduction target spending the 
minimum necessary amount of money on capital investments.  

 

Focus of interest in the FLEXGRID UCS 2.2 is the development of an optimal siting and sizing 
algorithm that results with lower CAPEX for profit-oriented ESP, considering existing markets 
and the proposed DLFM. Although issues that are still to be resolved prevent us from 
presenting final results and detailed analysis how an ESP may invest in new FlexAssets to 
reduce its OPEX, the lessons learned along the way are of great value. Nonetheless, the model 
will be quickly developed in its full capacity, and as such it will be vital part of the FLEXGRID 
ATP FST. Throughout the whole process, many questions have been raised, many challenges 
have been encountered and addressed and we attach short list of lessons learnt that have 
potential for further investigation in some future R&I initiatives.  

 

Table 5 - Lessons learnt for UCS 2.2 

Lesson learnt Research & Business insights 

CAPEX and OPEX are highly 
dependent 

When ESPs are creating their strategies, it is important 
to emphasize them how different magnitudes of 
investments in FlexAssets have impact on day-to-day 
expenses, and vice-versa. Hence, tools to compare 
different scenarios are indeed helpful for respective 
ESP to use their existing assets in optimal manner, take 
advantage of the possibility to participate in the 
electricity market and possibly invest in new FlexAssets 
to improve its market position.  

Computational efficiency is of 
great importance  

Models which include participation in different 
markets, network awareness and complex set of 
optimization variables may require high computational 
efforts to produce results. For practical usage, model 
should be easy to run on different computers, hence it 
is important to formulate a model that meets those 
requirements. Industry requires accurate and easy to 
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run models, and this tool will present exactly that case. 
Future research could include also new features, but 
constantly taking in mind computational issues that 
may happen.  

Deep interaction between FSP, 
DSO and TSO is needed. An 
advanced FSP-DSO-TSO 
interaction scheme needs to take 
place in order to achieve 
competitive, economically 
sustainable and network upgrade-
aware investments of FlexAssets 

ESP, DSO and TSO have conflicting interests, so a trade-
off analysis needs to take place between sustainable 
DER investments and social welfare maximization. ESP-
DSO-TSO interaction can achieve the optimum results 
compared to the case in which per actor investment 
decisions are made independently.  
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5  ESP’s profit maximization by co-optimizing 
its participation in several energy and local 
flexibility markets (UCS2.3) 

This chapter deals with the research problem of UCS 2.3. In FLEXGRID, we consider a profit-
seeker Energy Service Provider (ESP), who owns a set of Battery Storage Units (BSUs) located 
at various nodes of a radial distribution network. In order to maximize its profits, the ESP may 
participate in several energy markets and dynamically optimize its bidding strategy. In more 
detail, it exploits: market price forecasts, energy prosumption forecasts and information on 
the underlying network topology in order to derive its optimal scheduling and bidding 
strategy towards maximizing its business profits. Without loss of generality, we assume the 
ESP’s participation in four markets, namely:  

● Day-Ahead Energy Market (DAM) operated by the MO,  
● Day-Ahead Reserve Market (DA-RM) operated by the TSO,  
● Day-Ahead Distribution-Level Flexibility Market (DA-DLFM) operated by a novel 

market entity introduced by FLEXGRID market architecture, called FMO, and  
● Near-real-time Balancing Market (BM) operated by the TSO. 

 

Within FLEXGRID project’s context, we propose a novel energy market architecture that is 
called Reactive Distribution Level Flexibility Market (R-DLFM), which is compatible with 
today’s EU regulatory framework. A Flexibility Market Operator (FMO) clears the R-DLFM 
by minimizing the cost of acquiring the flexibility needed to ensure the participation of the 
Distributed Energy Resources (DERs) in the wholesale markets without jeopardizing the 
reliable operation of the distribution network. 

In this market environment, a merchant owner of Battery Storage Units (BSUs) can increase 
its profitability by providing energy and ancillary services at both the transmission and 
distribution level. BSUs with smart inverters can provide various valuable grid services to 
the TSOs and DSOs. In UCS 2.3, we consider an ESP as a market stakeholder, which owns a 
set of distributed BSUs and provides services to both the system-wide grid (TSO) and the 
local distribution network (DSO). 

 

In today’s power sector in Europe, the procurement of flexibility is characterized by a 
monopsony, since the Transmission System Operators (TSOs) are the only buyers of such 
services. In addition, the interaction between the TSOs and the Distribution System 
Operators (DSOs) is insufficient and the clearing process of the wholesale energy markets 
does not take into account the distribution grid operation and associated constraints (cf. the 
problem of today’s DN-unaware market clearing in EU area that is addressed by FLEXGRID 
WP5). Consequently, the participation of distributed generators (DGs) and other DERs in such 
markets can lead to violations of the physical constraints that the distribution network 
imposes and, consequently, to inefficient (technically and economically) market results. The 



63 

 

latter dictates the need of a shift of the DSO’s role towards a more active network operator, 
which should be entitled to purchase flexibility services from the local DERs. 

 

Congestion management and frequency/voltage control issues caused by high and 
distributed RES penetration increase the volatility of energy prices in modern energy markets 
(TN-level) as well as in emerging local flexibility markets (DN-level). This temporal and spatial 
volatility reveals the markets’ characteristics and at the same time offers business 
opportunities and revenues for ESPs that invest in DERs. 

 

Taking into account the recent smart grid architectural progress in the development of 
distribution-level flexibility markets4, this work co-optimizes the transmission and 
distribution grid services provided by an FSP owning distributed BSUs, using bi-level 
programming5 6. By considering market scales, we assume that the FSP is acting as a price 
maker in the Reserve Market (RM) and the DLFM, while it cannot affect the market prices 
in the wholesale energy and balancing markets (i.e. acts as a price taker). Thus, the 
FLEXGRID UCS 2.3 research contributions can be summarized as follows: 

 It proposes a novel energy market architecture, in which a DLFM is introduced in 
the timeframe between the day- ahead energy and the near-real-time balancing 
markets. An innovative DLFM clearing process is proposed, which enables the DSO 
to buy (i.e. FlexBuyer) the needed flexibility to tackle the possible contingencies 
resulting from the DN-unaware wholesale energy market dispatch decisions, 
calculating the optimal flexibility dispatch and compensation for the ESP (i.e. 
FlexSupplier). 

 A new bidding strategy is proposed for an ESP that stacks revenues based on four 
products: 1) wholesale energy arbitrage, 2) reserve capacity and 3) balancing 
energy for the TSO, and 4) local constraint support for the DSO. Bilevel modeling is 
used to model the strategic participation of a BSUs’ owner in both the TSO and DSO 
markets. 

 A novel iterative process is proposed to deal with non-linearities due to the ESP’s 
participation in two inter-dependent markets. 

 

To the best of FLEXGRID consortium’s knowledge, this is the first work that uses bi-level 
programming to model the decision process of a strategic ESP owning distributed BSUs and 
providing services both system-wide and to the local network operator. The interested 
reader may find more details about state-of-the-art related works from the international 
literature in D4.27. 

                                                        
4 Universal Smart Energy Framework (USEF), ”Flexibility Platforms”, November 2018. Available Online: 
https://www.usef.energy/app/uploads/2018/11/USEF-White-Paper-Flexibility-Platforms-version-
1.0_Nov2018.pdf  
5 E. Nasrolahpour, S. J. Kazempour, H. Zareipour, and W. D. Rosehart, “A Bilevel Model for Participation of a 
Storage System in Energy and Reserve Markets”, IEEE Trans on Sustainable Energy, vol. 9, no. 2, pp. 582-598, 
Apr. 2018. 
6 H. Pandzic, Y. Dvorkin, and M. Carrion, ”Investments in merchant energy storage: Trading-off between energy 
and reserve markets”, Applied Energy, vol. 230, pp. 277-286, 2018. 
7 H2020 FLEXGRID D4.2, https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D4.2_final_31032021.pdf  

https://www.usef.energy/app/uploads/2018/11/USEF-White-Paper-Flexibility-Platforms-version-1.0_Nov2018.pdf
https://www.usef.energy/app/uploads/2018/11/USEF-White-Paper-Flexibility-Platforms-version-1.0_Nov2018.pdf
https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D4.2_final_31032021.pdf
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This work presents a market architecture in which a Distribution Level Flexibility Market 
(DLFM) follows in an optimal way the decisions made by the DN- unaware day-ahead energy 
and reserve markets (intra-day timeframe), without changing the existing TN-level wholesale 
market structure being thus compatible with the existing regulatory framework. This 
Reactive DLFM (R-DLFM) architecture enables:  

 the DERs to participate in the TSO wholesale markets without jeopardizing the 
smooth operation of their underlying network, and 

 the DSO to buy the needed flexibility to remove contingencies resulting from the DN-
unaware wholesale energy market dispatch process. 

In a first step, as shown in the figure below, the Market Operator (MO) runs the Transmission 
Network (TN)-level day-ahead energy market after the TN-level Energy Service Providers 
(ESPs), such as generating companies, demand aggregators, retailers, etc., and the DN-level 
Flexibility Service Providers8 (FSPs) have submitted their energy offers/bids.  

 

Subsequently, the TSO operates the day-ahead reserve market given the MO’s dispatch 
schedules (cf. Day-Ahead Market - DAM dispatch) and the reserve capacity offers from the 
Reserve Market (RM) participants. This practice is common in most European markets (e.g. 
Nord Pool, EPEX, OMEL, GME, MIBEL), where the energy and reserve markets are 
sequentially cleared9. The role of the RM is to provide to the TSO the required 
upward/downward reserve capacity to keep its system balanced in the real-time (balancing) 
stage.  

 

In the third step, the distribution-level FSPs submit their flexibility offers (active and reactive 
up/down flexibility) to the FMO, which in turn clears the local DLFM, taking into consideration 
the DAM results, the particularities and the constraints of the DN (provided by the DSO), thus 
performing the DN- aware market clearing process. The role of the DLFM is to ensure that 
the DN operates within its safety/reliability limits, i.e. to remove local congestion, local 
balancing and voltage control issues that might occur due to the DN-unaware DAM clearing 
process. Thus, the FMO clears the DLFM by running an OPF problem, which takes as input:  

 the MO’s decisions pertaining to the local DERs that participate in the DAM, 

 the active/reactive up/down flexibility offers submitted by the FSPs, and  

 the DN constraints provided by the DSO.  

 

In case the TN-level DAM has not produced dispatches that violate the DN constraints, the 
DLFM results in zero flexibility procurement and, of course, zero DLFM prices. Otherwise, the 
DLFM produces non-zero active/reactive and upward/downward flexibility dispatches and 
the corresponding flexibility prices per DN node at which the FSPs will be paid for providing 
their flexibility services. Therefore, the DLFM clearing process will re-adjust the DAM position 
of the DERs located in the specific DN. Thus, these DERs will have to balance their portfolio 

                                                        
8 We use the term FSP for the DLFM participation, because in R-DLFM architecture, we consider that active 
power reserve and reactive power reserve products (that provide flexibility services to the DSO) are traded. 
9 J. Iria, F. Soares, and M. Matos, ”Optimal bidding strategy for an aggregator of prosumers in energy and 
secondary reserve markets”, Applied Energy, vol. 238, pp. 1631-1372, Mar. 2019. 
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in the TSO’s near-real-time balancing market (sell/buy power), in order to respect their 
commitment to the MO (DAM dispatches). For more details regarding the R-DLFM 
architecture, we kindly refer an interested reader to previous FLEXGRID reports, i.e. D2.210 
and D5.111. 

 
Figure 36: Proposed Reactive Distribution-Level Flexibility Market (R-DLFM) architecture 

 

In the context of the proposed R-DLFM architecture, we propose a bidding strategy of a 
profit-seeking ESP that owns a set of BSUs located at various nodes of a radial DN and 
participates in the TN-level energy, reserve and balancing markets, as well as in the DLFM. 
We assume that the ESP/FSP cannot affect the DAM and Balancing Market (BM) prices (acts 
as a price taker), while its total BSUs’ capacity is able to influence the Reserve Market (RM) 
and the DLFM prices. The objective of the ESP is to maximize its stacked revenues by 
optimizing its bidding strategy in the four aforementioned markets. The ESP submits:  

 self-scheduling bids in the DAM and BM,  

 price-quantity pairs for upward and downward reserve capacity in the RM, and 

 price-quantity pairs for four products in the DLFM, i.e.:  
o upward active power (MW – euros/MW),  
o downward active power (MW – euros/MW),  

                                                        
10 FLEXGRID D2.2, https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D2.2_final_31032020.pdf  
11 FLEXGRID D5.1, https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D5.1_final_03122020.pdf  

https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D2.2_final_31032020.pdf
https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D5.1_final_03122020.pdf
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o upward reactive power (MVAr – euros/MVAr), and  
o downward reactive power (MVAr – euros/MVAr).  

 

Uncertainties pertaining to market competition and local grid consumption/production 
power are not considered. We perform a deterministic analysis, allowing us to focus on 
studying the interactions between the individual markets, and how the ESP can manage its 
BSU portfolio to increase its profitability by participating in the four markets in a co-optimized 
manner. A stochastic optimization technique can be transparently implemented in the 
proposed model to tackle the afore-mentioned sources of uncertainty. In this case, however, 
an extensive computational burden would be added, so mathematical approaches such as 
decomposition techniques or robust optimization could offer interesting studies and 
promising solutions. 

 

 
Figure 37: The proposed bi-level mathematical model 

 

The bi-level model illustrated in the figure above is proposed to formulate the ESP’s problem 
of determining the optimal bidding strategy and the charging/discharging schedule of the 
BSUs. In the upper level, the ESP decides on the BSUs’ operating schedule and its bidding 
strategy, while taking as input the day-ahead energy market (DAM) prices and balancing 
market (BM) forecast prices and anticipating the impact of its decisions on the reserve and 
DLFM. The ESP’s decisions include the energy traded in the day-ahead energy market, the 
price and quantity bids to the RM and DLFM and the power bought/sold in the BM.  

 



67 

 

In the lower-level, for given ESP’s decisions, the TSO and the FMO clear the RM and the DLFM, 
respectively. In the RM and the DLFM clearing processes, the bids of the other market 
participants (i.e. rival ESPs) are treated as parameters. Moreover, the decisions of the DAM 
concerning the distribution-level demand and production are also treated as input 
parameters in the DLFM clearing process. 

 

A detailed mathematical analysis is provided in chapter 5 of D4.2, so the interested reader 
can refer to this report for detailed technical information. In a nutshell, the following 
problems have been mathematically formulated: 

 Upper-level problem for ESP’s profit maximization: The objective function of the 
upper-level problem maximizes the ESP’s overall profits from participating in all 4 four 
markets. This optimization is subject to several constraints such as battery 
charge/discharge related constraints, upward/downward reserve capacity 
provisioning to both TSO and DSO, quantity bid constraints, etc. 

 Lower-level problem 1 for clearing of the Reserve Market (RM): The objective 
function minimizes the reserve capacity procurement cost based on the market 
participants’ reserve prices and capacity offers. We assume that RM is cleared 
independently from the DAM. 

  Lower-level problem 2 for clearing of the DLFM: The objective function minimizes 
the DN-level flexibility procurement cost. The FMO’s objective is to ensure the 
necessary active and reactive flexibility at a minimum cost in order to address the 
possible contingencies (congestion and voltage issues). In other words, in case the 
DAM results violate the DN constraints, then the FMO will calculate the least-cost 
required flexibility dispatch and the selected DERs will have to re-adjust their DAM 
position based on the DLFM results, in order for the DSO to ensure a secure operation 
of its DN. 

 

Finally, the non-linear bi-level problem described above can be recast into a Mathematical 
Program with Equilibrium Constraints (MPEC). To this end, we replace lower-level problems 
(1) and (2) with their respective Karush-Kuhn-Tucker (KKT) conditions. Note that these 
problems are continuous and linear, and therefore their KKT conditions are necessary and 
sufficient optimality conditions. The resulting single-level problem contains non-linear 
complementarity slackness conditions. which can be linearized using the Big-M approach. 
Moreover, in order to tackle the non-linearities in the objective function of the upper-level 
problem, we use the Strong Duality Theorem and the optimality conditions of the two lower-
level problems as well as some algebraic operations. For more technical details, the 
interested reader can follow up the respective material in chapter 5 of FLEXGRID D4.2 and 
our recently published paper in IEEE Transactions on Sustainable Energy12.  

 

                                                        
12 K. Steriotis, K. Sepetanc, K. Smpoukis, N. Efthymiopoulos, P. Makris, E. Varvarigos, H. Pandzic, “Stacked 
Revenues Maximization of Distributed Battery Storage Units via Emerging Flexibility Markets”, IEEE Transactions 
on Sustainable Energy, October 2021, https://ieeexplore.ieee.org/document/9557813. 

 

https://ieeexplore.ieee.org/document/9557813
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5.5.1 Simulation setup  

This section studies the performance of our proposed mathematical model and algorithm 
using a modified IEEE 33-Bus test distribution system. The algorithm is implemented in 
MATLAB and in each iteration, the MILP problem is solved using Gurobi 9.0.2. All simulations 
were performed on a personal computer with Intel Core i7 4.00GHz and 32 GB RAM. 

 

The single-line diagram of the IEEE 33-Bus test system is illustrated in the Figure 38. The total 
installed distributed generation (DG) nominal capacity is 39 MW and the total base load is 
18.575 MW and 11.5 MVAr respectively. Detailed network, load and generation data of this 
modified system can be found in the respective FLEXGRID Github repository13. We 
considered two 2.5 MW x 1.6h BSUs, located at buses 24 (i.e. ES1) and 30 (i.e. ES2) in the 

distribution network (see Figure 38). Their discharging/charging efficiencies are set to 𝜂𝑖
𝑑 =

𝜂𝑖
𝑐 =0.93, while the initial state of energy of the BSUs is assumed to be 87.5%. Thirteen 

competing ESPs are assumed to provide flexibility services to the DSO through their 
participation in the DLFM. These ESPs control assets that are located at buses 13, 14, 16, 17, 
18, 22, 24, 25, 29, 30, 31, 32 and 33 and their active and reactive power bidding prices are 
set to 15€/MWh and 3€/MVAr, similar to a recently published work14. Data from Mavir, the 
Hungarian TSO, and the HUPX, the Hungarian Power Exchange, were used for the Day-Ahead 
Energy, Reserve and Balancing Markets. Regarding the Reserve Market, data from the 
Frequency Containment Reserve (FCR) Market clearing process were used. Balancing Market 
price scenarios were formed from historical data of the Mavir’s Balancing Energy Market. An 
interested reader can find a complete list of input data in the FLEXGRID Github repository 
mentioned above. Finally, a daily (24h) time horizon is considered. 

 

 
Figure 38: IEEE 33-node distribution system used for testing and performance evaluation 

purposes 

 

 

                                                        
13 https://github.com/FlexGrid/Battery_Stacked_Revenues  
14 L. Bai, J. Wang, C. Wang, C. Chen, and F. Li, ”Distribution Locational Marginal Pricing (DLMP) for Congestion 
Management and Voltage Support”, IEEE Trans. Power Systems, vol. 33, no. 4, pp. 4061-4073, Jul. 2018. 

https://github.com/FlexGrid/Battery_Stacked_Revenues
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5.5.2 Performance evaluation results 

In order to evaluate the proposed model, we examine and compare the following four 
cases: 

● Case 1: The ESP provides (energy and reserve) services to the TSO only through its 
participation in the DAM and RM. 

● Case 2: The ESP delivers flexibility services to the DSO through its participation in 
the DLFM. For its upward/downward P-flexibility provided to the DSO, the ESP will 
be paid or will pay the BM price. 

● Case 3: The ESP participates in all four markets (DAM, RM, DLFM, and BM) in a 
sequential manner. More specifically, the ESP initially optimizes its BSU portfolio in 
order to maximize its profits from a certain market, without taking into 
consideration the markets that follow. 

● Case 4: The ESP participates in all four markets adopting the proposed model that 
co-optimizes the ESP’s participation (and thus its expected total profits) in all four 
markets. 

 

In Case 1, the ESP makes profits from providing energy and frequency regulation services to 
the TSO through its participation in the day-ahead energy and the reserve market, 
respectively. The table below illustrates the scheduling and bidding decisions of the ESP, 
along with the DAM and RM prices. In this case, the ESP’s main target is to guarantee that 
the BSUs will have the maximum capacity available to offer in the RM, since this market 
brings the highest profits. Hence, the ESP trades energy in the DAM mainly to gain more profit 
opportunities, but also to pre-charge energy in order to use it for the RM that follows. For 
example, the ESP sells (i.e., battery’s discharge) total power of 2.86 MW in t = 1, when the 
energy price is higher (i.e., 36.09 euros/MW) as compared to the following hours. Moreover, 
this enables the ESP to offer higher downward regulation reserve capacity (i.e., 4.38 MW in t 
= 1). The ESP seldom performs energy arbitrage between the low-cost hours (e.g., t = 4 and t 
= 5) and high-cost hours (e.g., t = 8 and t = 9). In discharge hours, the ESP offers higher 
downward reserve capacity, while the BSUs’ charging process (e.g., t = 4, t = 5, t = 17, t = 22-
24) enables it to offer higher upward reserve capacity. However, in most hours, the ESP keeps 
its BSUs in idle mode (e.g., t = 2-3, t = 6-7, t = 10-16, t = 18-19 and t=21). The ESP’s main 
objective is to offer high combined reserve capacity at all times (note that the upward and 
downward reserve prices are equal with the exception of t = 24, in which upward reserve 
price is 12.09 and downward reserve price is 12.73 euros/MW), while in parallel take 
advantage of the most significant energy price fluctuations over time in the DAM. 
Conclusively, the ESP gains 26.25 euros from its participation in the DAM, and 2,417.90 € 
from providing ancillary services to the TSO, resulting in a total profit of 2,444.20 €. 
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Table 6: ESP’s scheduling and bidding decisions and market prices in Case 1 

 
 

In Case 2, the ESP provides flexibility (upward or downward, P- or Q-flexibility services) to the 
DSO. For the BSUs’ active power activations decided in the DLFM, the ESP will also have to 
pay/be paid in the BM. The purpose of the existence and operation of a DLFM is to ensure a 
direct participation of the DERs in the wholesale (TSO) markets without putting at risk the 
distribution network operation. The energy market produces a dispatch that violates several 
distribution network constraints at multiple hours. The FMO runs the DLFM in order for the 
DSO to purchase flexibility services to stabilize its network. The DLFM clearing process results 
are presented in the table below. In this specific case study, taking into consideration the 
production of the DGs and the local demand decided in the DAM, the distribution network 
faces mostly the over-voltage and under-voltage issues, and thus, the DSO mostly requires 
Q-flexibility services. Hence, we see in the table below that the BSU at node 24 (see column 
4) draws reactive power during most of the day, when the negative q-LMPs indicate the need 
for absorbing reactive power, while the BSU at node 30 (see column 5) offers reactive power 
in all hours (positive q-LMPs). The ESP chooses only a few hours during the day to offer 
upward or downward p-flexibility (active power) services and using only the BSU at node 24 
(see column 2). More specifically, the BSU at node 24 draws active power at hours t = 11 and 
t = 15, when the absolute value of the negative p-LMP is high and, in parallel, the BM 
expected price is relatively low. On the other hand, the ESP chooses to discharge power at 
hours t = 7, t = 8 and t = 22 with zero p-LMP, since the BM prices are high enough. Overall, 
the ESP gains a total of 674.04 euros (571.81 euros from the DLFM and 102.23 euros from 
the BM). 
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Table 7: The DLFM clearing results in Case 2 

 
 

In Case 3, the ESP initially decides on its energy trading in the DAM ignoring the next steps 
(i.e. participation in RM, DLFM and BM). Then, given the BSUs’ power schedule, the ESP offers 
reserve capacity in the RM without considering its strategy in the subsequent markets. 
Finally, the ESP offers its remaining power capacity to the DSO in DLFM, disregarding the 
forecast BM prices, at which the ESP eventually will pay/be paid its DLFM active power 
dispatch. The table below illustrates the final BSUs’ active/reactive power schedules and 
reserve capacity commitments. At first, the ESP performs energy arbitrage to maximize its 
profit from the DAM and results in 217.67 euros. This, however, hampers the BSUs’ ability to 
offer regulation services through the RM. Comparing the RM prices from the respective 
tables in Case 1 and Case 3, we see that not co-optimizing the bidding strategies for energy 
and reserve leads to a reduction in the upward reserve prices during hours t = 4 and t = 16 
and in the downward reserve prices during hours t = 9 and t = 21 by 5%. The lowered prices, 
along with the diminished available capacity to offer to the RM, reduce to a RM profit for the 
FSP of 1,699.70 euros, which is 30% lower than the profit that the ESP gains in the RM in Case 
1 (i.e. 2,417.90 euros). On the other hand, the ESP’s previous scheduling and bidding 
decisions leave the BSUs with neither the upward nor the downward active power capacity 
to offer to the DSO. Thus, the BSUs provide only q-flexibility in the DLFM, which is constrained 
by the maximum apparent power of the converter. Studying the DLFM q-LMPs in Cases 2 and 
3 from the respective tables, we notice that the ESP, through its bidding policy, manages to 
increase by absolute value the DLFM prices at nodes 24 and 30 in most hours. However, the 
inability to provide p-flexibility services leaves the ESP earning 498 euros, which is 13% lower 
than the ESP’s profits from DLFM in Case 2 (i.e. 571.81 euros). Ultimately, the myopic 
behavior of the ESP, which participates in each market disregarding the profit opportunities 
that follow, results in its total profit of 2,415.70 euros, which is 1.17% lower than in Case 1 
(i.e. 2,444.20 euros), despite the fact that the ESP participates in all four markets. One 
advantage of sequential market participation (i.e. Case 3) is that the ESP is not exposed to 
the balancing market’s uncertainties. In the specific case study, the BM profits are only 0.33 
euros, which may be a good option for an ESP that wants to follow a conservative market 
participation policy. 
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Table 8: The BSUs’ power and reserve schedules in Case 3 

 
 

Implementation of the proposed FLEXGRID bidding strategy, which co-optimizes the stacked 
revenues of the ESP coming from all four markets under study (i.e. Case 4), produces the 
results presented in the table below. In this Case, the ESP attempts to take advantage of all 
business opportunities and it achieves DAM profits far higher (i.e 974.09 euros) than in Cases 
1 or 3. Note that the DAM dispatch does not determine the BSUs’ state-of-charge alone, but 
it is only one of the two components of the final charging/ discharging schedule (the other 
one is the DLFM active power dispatch). Thus, the ESP can perform arbitrage between the 
DAM and the DLFM (discharge in DAM and charge in DLFM and vice versa), in contrast with 
Cases 1, 2 and 3 where the ESP does not have this opportunity. Therefore, the ESP chooses 
to trade energy in the DAM much more frequently than in the previous Cases. The ESP’s 
decision on the charging/discharging DAM schedule of the two BSUs does not consider only 
the DAM prices, but also the profit opportunities in the RM, the nodal DLFM prices (and 
therefore the location of each BSU in the distribution network) as well as the expected BM 
prices. More specifically, the ESP, expecting the p-LMPs at node 24 to be negative (DSO’s 
signal that it needs downward p-flexibility in this area) during most of the day (t = 1-18, 24), 
uses the BSU at this node at maximum discharge power (2.5 MW) in hours t = 1-4, 8-13, 15 
and 18. In this way, the ESP creates profit opportunities in the RM by maximizing its available 
downward reserve capacity. However, in order for the ESP to be able to sell energy and 
downward regulation in the DAM and the RM respectively, the ESP has to provide downward 
p-flexibility to the DSO, even if it means that the ESP will have to pay for it, since the expected 
BM prices are higher in absolute value than the DSO’s reward per unit. Hence, the ESP 
commits the maximum downward reserve capacity to the RM that the state-of-charge 
constraints of the BSU allow and the rest of the available downward power capacity is sold 
in the DLFM (see the two figures below). 
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Table 9: The BSUs’ power and reserve schedules in Case 4 

 
 

In hours 5–7, 14, 16 and 17, the BSU at node 24 is decided to discharge power, but not at its 
full capacity. This produces available upward reserve and enables the ESP to also provide 
upward reserve capacity in the RM. This capacity is entirely sold in the RM, except in hour 
when state-of-charge constraints do not allow it (see figure below). In hours 20–23, the p-
LMPs are positive, indicating that the DSO requires upward p-flexibility. However, a 
constraint of upper-level problem dictates the BSU at node 24 to charge power in order to 
restore the state-of-charge at the end of the day. Nevertheless, in hour 22, the BM price is 
expected to reach its peak (83.26 euros), and thus the ESP provides the DSO with 4.35 MW 
of upward p-flexibility, even if the DLFM price is quite low at this time.  

 

At node 30, i.e. the location of the second ESP’s BSU, the DSO requires only upward p- and 

q-flexibility services throughout the day (except for the first hour, when 𝜆30,1
𝑝

 = 0). In order 

for a BSU to be able to provide upward p-flexibility services, it should buy power in DAM. 
Thus, the main criterion for the ESP to decide whether the BSU will sell active power in the 
DLFM is the comparison between the energy price (at which the ESP will have to pay the 
charging power) and the sum of the pLMP at node 30 and the expected BM price (at which 
the ESP will be paid for the upward p-flexibility service). Therefore, the BSU at node 30 
provides upward p-flexibility services to the DSO in hours 7, 16, 22, 23 and 24, when this is 
financially advantageous (see Figure 41). During the rest of the day, we see in the table below 
that the BSU chooses to trade power in the DAM, with the objective to have the highest 
possible available upward and downward reserve capacity. Hence, as shown in Figure 39, the 
BSU offers upward reserve capacity throughout the day and downward reserve capacity from 
the beginning of the day until hour 21. In the last 3 hours, the high profit opportunities in 
DLFM and BM leads the ESP to leave no space for downward reserve capability. 

 

Finally, throughout the day, the ESP makes profit by also providing voltage support services 
to the DSO, by absorbing (in hours when the q-LMP is negative) or supplying (in hours when 
the q-LMP is positive) reactive power to the grid. The capability of the BSUs to trade reactive 
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power depends on their active power schedule and the apparent power rating of the 
converters. For example, in hours 12, 13 and 14, when the absolute values of the q-LMPs at 
node 24 are the highest throughout the day, the aggregate active power schedule of the BSU 
located at this node is close to zero. Therefore, the BSU can absorb reactive power at a rate 
very close to the maximum and increase its profits. On the contrary, in hour 11 the aggregate 
active power dispatch of the same BSU leaves no room for reactive power services, since it 
reaches the maximum apparent power potential of the BSU. At node 30, the BSU supplies 
reactive power the local grid at all times, as the positive q-LMPs dictate. 

 
Figure 39: BSUs’ available and offered reserve capacity to the RM 

 
Figure 40: BSUs’ available and offered active power capacity to the DLFM 
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Figure 41: Comparison between the DAM prices and the sum of the BM and the active 

power DLFM prices 

 

Overall, the summary in Table 10 indicates that the RM profits in Case 4 are lower than in 
Case 1, but higher than in Case 3. In Case 1, the ESP, co-optimizing the energy and reserve 
services to the TSO, tries to maximize its storage capacity that is available to be offered to 
the TSO for regulation purposes, using the energy market. In Case 4 though, the ESP chooses 
not to offer its entire available capacity in the RM, since the DLFM and the BM, which 
chronologically follow, provide additional revenue streams. Even so, being much more active 
in the DAM comparing to Case 3, the ESP has higher reserve potential in Case 4 and thus 
derives 14.7% higher RM revenues (i.e. 1,950.60 euros). The ESP’s decisions bring it profits 
of 1,101.70 euros from the DLFM, which surpass by far the ESP’s profits from the local grid 
services in Cases 2 and 3 (higher by 92.67% and 121.22%, respectively). However, the BSUs’ 
p-flexibility services provision to the DSO, which modify the agreed energy schedule in the 
DAM, lead the ESP to pay in the BM 210.94 euros, in contrast with the Case 2, in which the 
ESP earns 102.23 euros and Case 3, in which the ESP has negligible BM revenues. In Table 9, 
the aggregate ESP’s profits in all four Cases are presented.  

 

Our proposed strategy achieves a total gain of 3,815.45 euros, which is super-linear, i.e. the 
revenues from jointly optimizing the BSUs’ services to both the TSO and the DSO are larger 
than the sum of performing the individual applications (Case 1 and Case 2). In fact, the ESP 
earns 22.36% higher revenues in Case 4, than in Cases 1 and 2 combined. Moreover, the 
proposed FLEXGRID model (Case 4) accomplishes 57.95% higher revenues than the ‘myopic’ 
strategy of Case 3. 
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Table 10: Summary of ESP’s revenues per market and case under investigation 

 DAM  

Revenues (€) 

RM 

Revenues (€) 

DLFM 
revenues (€) 

BM  

Revenues 
(€) 

Total ESP’s 
revenues (€) 

Case 1 26.25 2,417.90 - - 2,444.20 

Case 2 - - 571.81 102.23 674.04 

Case 3 217.67 1,699.70 498 0.33 2415.70 

Case 4 974.09 1,950.60 1,101.70 -210.94 3,815.45 

 

We now further study several sensitivity parameters of the proposed decision-making 
procedure (cf. case 4 above) and the profitability of the ESP to some externalities, such as 
the location of the BSUs and the competing ESPs’ offers. 

 

5.5.2.1 Impact of the Location of BSUs 

In this subsection, we demonstrate how the siting of the BSUs (i.e. the nodes in the 
distribution network) affects the profitability of the ESP. For this purpose, we consider three 
potential scenarios for the BSUs’ locations, namely: i) nodes 3 and 19, ii) nodes 18 and 33 and 
iii) nodes 25 and 31. The ESP’s individual market revenues for each location scenario are 
illustrated in the figure below. In the first scenario, the BSUs are located close to the root of 
the distribution grid, where the demand for flexibility, and correspondingly the DLFM prices 
are low. 

 
Figure 42: Breakdown of the ESP’s market revenues for each BSU location under 

investigation 

 

In this case, the ESP exploits the DSO’s FlexRequest for downward P-Flexibility, so as to 
perform market arbitrage and sell energy in the DAM. Thus, we observe that the DAM profits 
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in this scenario are higher than in any other market. The second highest source of revenues 
for the ESP is the RM, while in the DLFM the ESP is paid for its Flexibility services at a relatively 
low price. In the BM, the ESP pays for its downward p-Flexibility services. In the second 
scenario, the BSUs are located at the edges of the distribution network. At first, the BSU at 
node 18 mainly offers downward p-flexibility services in the DLFM, which gives it the 
opportunity to sell power in the DAM. The BSU at node 33 charges power in the DAM 
occasionally, so as to offer upward p- and mostly q-flexibility as a voltage support service to 
the DSO. Both BSUs take advantage of their available upward and downward reserve 
capacity, in order to increase their profitability via their participation in the RM. Finally, in 
the third scenario, the BSUs are placed at nodes 25 and 31, where the DSO’s need for 
flexibility is rather high, rendering the DLFM much more profitable for the ESP than in the 
other two scenarios. The BSU at node 25, since the DG3 production (see IEEE. 33-node test 
system in figure above) mainly requires the provision of downward p-flexibility, is eligible to 
sell energy in the DAM during most of the day. On the other hand, the under-voltage issues 
at node 31 force the DSO to demand upward Q- and P-Flexibility services, which leads this 
BSU to strategically lose money in the DAM in order to offer remunerative flexibility services 
to the DSO. Overall, the total revenues for the ESP are higher for location 3 (4,097€), followed 
by location 2 (3,525.5€) and location 1 (3,302.7€) profits. 

 

5.5.2.2 Impact of competing ESPs’ price offers 

Previously, we assumed that price offers of the competing ESPs are 15€/MW for p-Flexibility 
and 3€/MVAr for q-Flexibility services. Now, we study the effect that the magnitude of these 
offers has on the results that our bidding strategy produces. To this end, we examine three 
scenarios of the price offers presented in the table below. The individual market ESP’s 
revenues for each scenario are presented in the figure below. The DLFM profits increase 
when increasing the competing ESP’s offers since the DLFM prices rise. On the other hand, 
the DAM profits plummet in Scenario 2 and 3 comparing to Scenario 1. This is explained by 
the fact that higher DLFM prices prompt the ESP to provide upward P-Flexibility services to 
the DSO at node 30. To do that, the BSU at this node has to charge higher amounts of power 
in the DAM and ultimately downscale the DAM revenues. Additionally, in Scenario 2, the ESP, 
in contrast with Scenario 1, makes a small profit in the BM, which is even higher in Scenario 
3. This is justified since the increase of the DLFM prices (and their comparison to the DAM 
prices) makes it profitable for the ESP to provide upward P-Flexibility services, which are 
compensated in both the DLFM and the BM. Conclusively, the ESP in Scenarios 2 and 3 gains 
66.57% and 146.56% higher profits than in Scenario 1 (i.e. 6355.5€ and 9407.6€ as compared 
to 3815.5€). 

 

Table 11: Scenarios of competing ESPs’ price offers 

 𝑐𝑖,𝑡
𝑠,𝑃,𝑢𝑝

/𝑐𝑖,𝑡
𝑠,𝑃,𝑑𝑛 (€/MW) 𝑐𝑖,𝑡

𝑠,𝑄,𝑢𝑝
/𝑐𝑖,𝑡

𝑠,𝑄,𝑑𝑛 (€/MVAr) 

Scenario 1 15 3 

Scenario 2 45 9 

Scenario 3 75 15 
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Figure 43: ESP's individual market revenues in each price offer scenario 

 

5.5.2.3 Impact of the size of BSUs 

In this subsection, we demonstrate how the size of the BSUs affects the profitability of the 
ESP. Hence, we consider 3 different BSUs’ sizes: a) 1.25MW/2MWh, b) 2.5MW/4MWh, and 
c) 3.75MW/6MWh. The individual market ESP’s revenues for each scenario are presented in 
the figure below, which illustrates, as expected, that as the size of the BSUs increases, the 
ESP’s market profitability also rises. An ESP with installed BSUs of 2.5MW/4MWh (Scenario 
2) makes revenue of 3815.5€, while with half installed BSUs power (Scenario 1) gains 1986.3€ 
(47.94% less than Scenario 1). In Scenario 3, with 1.5 times more BSUs power than in Scenario 
2, the ESP earns 5555.6€, i.e. 45.61% higher total revenues. 

 
Figure 44: Breakdown of the ESP’s market revenues for various BSUs sizes 
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In FLEXGRID UCS 2.3, we considered a novel market architecture (i.e. Reactive DLFM) that 
introduces a distribution level flexibility market (DLFM) operating in the intra-day timeframe, 
between the day-ahead energy and the near-real-time balancing markets. In this context, we 
formulated a bi-level model for an ESP that owns distributed BSUs to optimally calculate its 
market participation strategy. Performance evaluation results demonstrate that our model 
achieves super-linear gains: the ESP obtains significantly higher revenues through the joint 
optimization of both the TSO and the DSO services than the sum of the individual profits 
from devoting the BSUs to one of the two applications. Finally, a sensitivity analysis was 
conducted to showcase the impact of some externalities on the results (i.e. siting and sizing 
of BSUs as well as competing ESP’s offers). The proposed model can be of use to flexibility 
providers in the modern electricity market structure that accommodates a distribution-level 
flexibility market. Such market is expected in the democratized and DG-rich power systems. 
Furthermore, our work can provide useful insights to policy makers, regulators and market 
operators regarding the operation of the DLFM and the TSO-DSO interaction. As a future 
work, we find it worthwhile to take into account uncertainties in renewable generation, load 
and market competition, and study the impact of the associated risks on the ESP’s 
profitability. Finally, our future research will be focused on the balancing stage, including the 
activation of reserves. 

 

After communicating FLEXGRID UCS 2.3 scientific results to both academic and industrial 
communities, we have come up with a short list of lessons learned that could be further 
investigated in future R&I initiatives. The Table 12 summarizes research and business-related 
insights for each one of the lessons learned. 

 

Table 12 - Lessons learnt for UCS 2.3 

Lesson learnt Research & Business insights 

An ESP should be aware of the grid 
constraints in order to be able to get 
the best possible financial revenues 
and at the same time help the system 
operators in the most efficient way 

Efficient data sharing between profit-based ESPs 
and the rather ‘neutral’ system operators is not a 
straight-forward business process, because the 
latter (and especially DSO) are not willing to 
disclose critical information regarding the 
operational process of the grid. More research is 
needed in order for the ESP to be able to easily, 
effectively and in near-real-time be informed 
about the network needs   

ESP profitability highly depends on the 
energy market architecture, related 
grid specifications and regulatory rules 

Need to further research on the impact that 
energy market architecture may have on ESP’s 
profitability. The regulator should make sure that 
it does dis-incentivize new flexibility investments 
and even guarantee a minimum profit/RoI for the 
ESP (cf. with the need for economically sustainable 
investments). 

Strategic ESP market participation may 
yield undesirable market manipulation 

Market Operators need to devise novel market 
clearing mechanisms that dis-incentivize ESPs 
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phenomena especially in cases in 
which the ESP has significant market 
power in addressing a local network 
contingency  

from manipulating the market at the expense of 
incurring additional energy costs for the system. 
On the other hand, the economic sustainability of 
flexibility procurement by ESPs should also be 
guaranteed. 

Market price forecasting errors are 
expected to directly affect the ESP’s 
revenues 

Volatility of DLFM and balancing market prices is 
expected to be high, while day-ahead energy 
market and reserve market prices can be predicted 
with much less mean absolute percentile error. 
However, high volatility in market prices implies 
more potential revenues for the ESP. Thus, an 
advanced risk analysis is required in order to 
calculate the conditional value at risk (CVaR) and 
other related KPIs. 

A deterministic analysis may not be 
able to deal with many types of 
uncertainties that may come up in the 
ESP’s real-life business 

Stochastic optimization techniques can be 
developed to deal with uncertainties pertaining to 
market competition, network needs, 
consumption/RES production curves, etc. 
However, a heavy computational burden will be 
introduced and thus advanced decomposition 
techniques will be needed in order for the ESP to 
be able to compute its optimal bidding strategy in 
near-real-time context. 

The location and the size of ESP’s 
flexibility assets directly affect its 
profitability.  

Optimal flexibility planning (cf. UCS 2.2) and 
stacked revenues’ maximization business 
processes should be closely inter-related. 

Accurate FlexAsset modeling can 
significantly affect the ESP’s stacked 
revenues. The problem is that current 
models produce too optimistic results 
that may have large negative impact 
on ESP’s profits. 

More accurate FlexAsset (i.e. battery storage 
system) modeling is needed that is much closer to 
real-life operation of these flexibility assets (cf. 
UCS 2.1 results). 
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6  Market-aware and network-aware bidding 
policies to optimally manage a virtual 
FlexAssets’ portfolio of an ESP (UCS 2.4) 
This chapter deals with the research problem of FLEXGRID UCS 2.4. In this deliverable, we 
elaborate on our ongoing research work that has been reported in chapter 6 of D4.2 (i.e. 
Month 18). In D4.2, we provided a thorough and extensive mathematical model and 
algorithmic solution together with intuitive performance evaluation results.  

 

Summarizing our contribution so far, we considered an ESP that controls a virtual and 
heterogeneous flexibility assets’ portfolio (i.e., set of Virtual Power Plants) throughout the 
transmission grid, and participates in an imperfect wholesale electricity market. The portfolio 
consists of heterogeneous flexibility assets, namely: i) loads that must be satisfied by all 
means, ii) distributed RES generation, iii) energy storage capacity and iv) shiftable loads.  
Complementarity modeling is proposed to derive both the optimal schedule of 
heterogeneous flexibility assets and strategic market decisions for ESP. In the proposed 
model, the distribution network constraints are taken into account in order for the ESP’s 
quantity and price market bids to be network-aware and thus reliable. Hence, a 
Mathematical Problem with Equilibrium Constraints (MPEC) is formulated, which is 
transformed into an equivalent Mixed Integer Linear Programming (MILP) model. We have 
shown that the proposed methodology results in significantly larger profit for the ESP, even 
if it possesses a small portion of market’s production and/or consumption capacity. 
Moreover, we have investigated the impact on the results of Renewable Generators (RGs), 
flexible loads and Energy Storage Systems’ (ESSs) location and size. Finally, we have shown 
that if distribution network constraints are not considered, this results in infeasible and costly 
dispatch schedules.   

 

Following up the above-mentioned results, our next research step was to apply the 
proposed mathematical model and algorithm for a MicroGrid Operator’s (MGO) business 
case. The main difference is that we consider remote energy communities (or else energy 
islands), which experience weak grid connections. In this business case, it is generally more 
appropriate for the MGO to be able to guarantee self-adequacy and thus be able to operate 
in an islanded mode as much as possible. This is achieved via maximizing local RES usage 
and minimizing the cost of energy in the microgrid. Within M19-M26 period, we adapted 
the existing mathematical model and algorithm and derived interesting performance 
evaluation results that are reported in this chapter.     
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Energy islands and remote energy communities with weak grid connections can be the EU’s 
“front-runner” use case towards the energy transition15, as they can benefit from:  

 low cost of RES (especially taking into consideration EU’s energy transition strategy 
and ambition for worldwide RES leadership within the next decades) compared to the 
high energy production costs of conventional generators,  

 deployment of local RES and storage systems, which can both enhance cost 
effectiveness and decarbonize the local energy system in the long term, and 

 the exploitation of the close social bonds of the local community members that 
increase end users’ engagement 16,17. 

 
Recent EU regulations18 that incentivize local investments in integrated energy systems, 
highlight that the need for optimal RES investments triggers investments in flexibility assets, 
too (e.g. Electric Vehicles - EVs, Battery Storage Systems - BSS, Demand Side Management - 
DSM, etc.). Therefore, their efficient siting, sizing and scheduling becomes an apparent 
problem to solve towards the effective utilization of local RES usage. 
 
Moreover, the underlying network of a typical energy island/ remote energy community/ 
microgrid is vulnerable to severe instability issues, because:  

 its interconnection point with higher voltage networks (i.e. main grid at the 
transmission network level) is ‘weak’, and  

 its existing lines at the distribution network level are usually inadequate to 
accommodate the continuously increasing RES penetration, especially at the edges of 
the low-voltage distribution network19.  

 the peak load requirement is usually quite different in various seasons of the year 
(e.g. in EU islands, the peak load is much higher in the summer months due to 
increased population and respective energy demand needs)  

 
Finally, when not operating in islanded mode, the MicroGrid Operator (MGO) purchases/sells 
energy from/to the main grid to cover/sell its excessive demand/supply. Hence, network- 
and market-aware bidding is required to minimize energy cost and maximize end users’ 
welfare. 
 

                                                        
15 A. Nouicer and L. Meeus, “The EU Clean Energy Package (2019 ed.)”, European University Institute, October 

2019. 
16 L. Steg, R. Shwom, T. Dietz, "What Drives Energy Consumers?: Engaging People in a Sustainable Energy 
Transition," IEEE Power and Energy Magazine, vol. 16(1), pp. 20-28, Jan.-Feb. 2018. 
17 I. Mamounakis, N. Efthymiopoulos, P. Makris, D. J. Vergados, G. Tsaousoglou, E. Varvarigos, “A novel 

community pricing scheme for managing virtual energy communities and promoting behavioral change 

towards energy efficiency”, Elsevier Electric Power Systems Research (EPSR), vol. 167, pp. 130-137, 

February 2019. 
18 DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on 

the promotion of the use of energy from renewable sources. 
19 S. P. Rosado and S. K. Khadem, "Development of Community Grid: Review of Technical Issues and Challenges," 
IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1171-1179, March-April 2019. 
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The smart grid actor called MicroGrid Operator (MGO) is a special case of the more general 
term “Energy Service Providers (ESPs)” that we have introduced within the FLEXGRID context. 
Without loss of generality, ESPs are smart grid stakeholders that dispose RES and/or flexibility 
assets and participate in the traditional energy markets and/or in local flexibility markets. In 
more detail, ESPs could be categorized in four major categories which are: i) RES 
producers/traders and/or RES aggregation service providers, ii) aggregators of loads from 
home electric appliances (e.g. HVAC, EVs, etc.) towards the provision of Demand Side 
Management (DSM) services, iii) owners and operators of BSS as well as providers of 
flexibility services through them, and iv) retailers, who just purchase energy from wholesale 
markets in order to serve the loads of their customers and thus may not possess any RES, 
DSM and BSS assets. Recently, ESPs compose hybrid business models, which means that they 
may fall in more than one from the aforementioned categories as extensively described in 
the use case scenarios’ analysis of the previous  FLEXGRID D2.120.  
 
In the context of this work, we focus on a specific business case through which an MGO entity 
efficiently represents the interests of local energy communities through the co-design and 
co-optimization of a set of services. In more detail, the services that MGO operates on behalf 
of the local energy community are:  

 optimal sizing, siting and operation for RES, Battery Storage System (BSS) and 
aggregated Demand Side Management (DSM) assets,  

 modeling and management of distribution network through the use of optimal power 
flow algorithms in order to deal with local congestion and voltage control problems, 
and  

 advanced models for the optimal MGO’s participation in the existing energy markets. 
 

According to the aforementioned innovative business case, the major contribution of 
FLEXGRID UCS 2.4 is the development of all the intelligence (i.e. mathematical modeling 
and algorithms) that this business model needs. In more detail, this work develops a 
holistic MGO’s operational framework, which can concurrently: 

 Coordinate the scheduling and planning of various types of flexibility assets, providing 
thus an integrated operation and investment tool for decision makers. 

 Exploit Optimal Power Flow (OPF) algorithms, which take into consideration local 
congestion and voltage-related constraints and allow a network-aware RES and 
flexibility assets’ exploitation policy. 

 Co-optimize the operation of RES and flexibility assets and execute scenarios that 
facilitate the co-design of investments with their optimal mix. 

 Model the competition in the day-ahead energy market and thus allow MGO to exploit 
the market competition. In contrast to the related literature that mainly considers 
large price-maker entities at the transmission system level, we showcase that MGO’s 
profits can also be significant, despite the fact that its portfolio represents only a small 
portion of the market’s total energy production/consumption. In this way, we assist 
energy islands and remote energy communities in order to mitigate their inherent RES-
related and geographic-related negative externalities. 

 

                                                        
20 https://flexgrid-project.eu/deliverables.html  

https://flexgrid-project.eu/deliverables.html
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FLEXGRID proposes a network- and market-aware bidding strategy to co-optimize RES and 
flexibility asset usage in energy islands (or else remote local energy communities), which have 
a weak connection with the upper-level transmission network as well have weak connections 
within the distribution network (and especially the network edges).  
 

In more detail, FLEXGRID proposes an MGO’s operational framework, which can:  

 Gradually decide the optimal mix of its RES and flexibility assets’ sizing, siting and 
operation 

 Respects the physical distribution network constraints in high-RES penetration 
contexts 

 Bid strategically in the existing day-ahead energy market 
 
In this way, energy cost in an energy island setting is minimized, where weak grid 
connections and unstable network operation in a high-RES penetration environment are 
considered. According to these, we also assumed that the local energy communities may 
opt for RES and flexibility asset investments instead of traditional network upgrade and 
reinforcement investments. Simulation results show ways that optimal and coordinated 
planning and scheduling of RES and flexibility assets can boost green energy investments.  

 

It should also be noted that this work is closely inter-related to the UCS 2.2, in which optimal 
planning strategies are proposed that utilize stochastic and robust optimization models. It is 
also closely inter-related with UCS 2.3, in which optimal flexibility asset scheduling policies 
are proposed in order to maximize ESP’s profits through participation in several energy, 
markets simultaneously, such as day-ahead, balancing, reserve and other novel distribution 
network level flexibility markets that are proposed by FLEXGRID. 

 

Without harm of generality, this work considers a transmission grid that is characterized by 
a set of buses and a set of transmission lines. We also assume a Distribution Network (DN), 
which could be seen as a tree whose root is located at a given bus of the transmission grid 
(cf. outlined area in Figure 45 below). The DN is operated by a local DN operator or else MGO. 
The business case/model of the MGO is analyzed earlier in the introductory section21. 
According to it, MGO is responsible for controlling the BSSs and the flexible loads in order to 
strategically participate in the day-ahead energy market and in this way, it offers energy 
services with minimum cost to the local community and high financial sustainability for local 
RES operators.  

 
The objective of the MGO is to use all its available local RES and thus avoid RES spillage. In 
addition, if the energy that the local RES produce is smaller than local demand, MGO buys 
energy from the main grid at the lowest possible cost. At the same time, the MGO has to 

                                                        
21 The proposed model can be realized in all those small-scale DSOs that operate a rather vertical business in 
EU area (e.g. BNNETZE in southwestern Germany, non-interconnected islands in Greece and Croatia, etc.). 
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ensure the reliable operation of its network, which is a quite difficult task especially in future 
high RES penetration scenarios, where local RES curtailment should be kept at a minimum.  

 
For example, as shown in Figure 45, a congestion problem may occur due to the weak 
connection linking the energy island/remote energy community with the main grid. 
Moreover, at the network edges, it is highly probable that various local voltage and 
congestion problems may occur frequently due to the expected high RES penetration levels 
and the rather weak connections within the local DN. The goal of UCS 2.4 is to calculate the 
MGO’s optimal bidding strategy in the day-ahead energy market and the optimal schedule of 
the flexibility assets, while simultaneously taking into account the distribution network 
constraints. 

 
The proposed system model is applicable to energy communities, cooperatives (i.e. 
RESCOOPs22), islands and municipal/local electric utilities, which own local RES, local 
flexibility assets and operate the local DN at the same time. In these cases, it is essential the 
facilitation of local and bottom-up RES and flexibility asset investments, which strengthen 
the energy autonomy and have lower costs in the long term. This is due to the fact that 
investments in stronger interconnection points with the main grid or local network 
reinforcements have higher financial cost and/or very high uncertainty due to bureaucratic 
procedures. In order to adequately present the advantages of the proposed business case, 
we evaluate two main RES penetration scenarios.  

 

 
Figure 45: System model of UCS 2.4 

 

                                                        

 22 ‘European federation of citizen energy cooperatives’, https://www.rescoop.eu/, accessed 07 September 

2021. 
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The first is the high-RES penetration scenario. Its objective is to eliminate local RES 
curtailment and achieve at the same time network feasibility (i.e. satisfy the constraints of 
the distribution network). Thus, this case is referred to as network-aware bidding.  

 
On the second scenario, where RES penetration is low, we assume that demand cannot be 
satisfied by local RES. Thus, this case is dedicated in market-aware bidding to minimize 
energy costs. Both network- and market-aware bidding properties of the proposed 
framework are formulated below. 
 

The MGO’s decision process can be formulated as a bi-level problem23, where the Upper-
Level (UL) problem represents the minimization of MGO’s energy costs and the Lower-Level 
(LL) one represents the market clearing process that derives the Locational Marginal Prices 
(LMPs) at the transmission network level. The generated Mathematical Problem with 
Equilibrium Constraints (MPEC) constitutes the MGO a price maker entity that is able to 
anticipate the electricity market’s reaction to its decisions (quantity/price bids) and affect the 
system’s marginal price. In order to model this process, a Stackelberg Game is formulated in 
which the MGO is the Leader and the day-ahead energy market clearing is the Follower. The 
problem is solved from the MGO’s point of view that acts strategically. Hence, an 
Optimization Problem constrained by an Optimization Problem (OPcOP) is formulated, in 
which the UL problem is constrained by the LL problem. 

 

6.4.1. Upper level (UL) problem – MGO minimizes its costs 

In order for the MGO to schedule its flexibility assets in a network- and market-aware 
manner, its cost function is defined as: 

, ,min
U

G

M

X i t i t

t H i N

p
 


, 

(1) 

This optimization problem is subject to various constraints related to the operation of the: i) 
shiftable loads (i.e. DSM units), ii) BSS units, iii) DN, and iv) quantity bids. When a DN located 

at bus Gi N  supplies power to the main grid at timeslot t , it sells this power in the pool 
market at price ,i t ,which is the nodal price (LMP) at bus i. In contrast, when a DN i  draws 

power from the grid, it buys that power from the pool market at price ,i t . The amount of 

power to be sold or purchased at a specific bus and timeslot denoted as ,

M

i tp  is a decision 

variable of MGO’s problem. 
 

6.4.2. Lower level (LL) problem – Market Operator (MO) minimizes social cost 

The energy market is cleared by solving problem (1) in order to calculate the dispatches and 
the Locational Marginal Prices (LMPs). This minimizes the social cost, while accounting for: i) 
the transmission grid constraints, ii) the participants’ quantity offers/bids and iii) price bids. 

                                                        
23 S. Gabriel, A. Conejo, J. Fuller, B. Hobbs, and C. Ruiz, “Complementarity Modeling in Energy Markets”, New 
York, NY, USA: Springer, 2013. 
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Thus, MO decides on the energy dispatch schedules of the market participants (generators, 
demand aggregators and MGO) by solving a DC-OPF problem: 
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The decision variables of optimization problem (2) are: i) the power supply ,i tg  of each 

generator  i G , ii) the power consumption ,i td  of each demand aggregator  i D , iii) the 

power supply/consumption ,

M

i tp  of each DN and iv) the voltage phase angles ,i t  at all buses 

Gi N at timeslot t . The price bids of generators and demand aggregators at timeslot t are 

denoted by ,

g

i tc  and ,

d

i tc , respectively. Equation (6.3) expresses the power balance at bus i of 

the grid. The dual variables of these constraints provide the LMPs. In (3), ijy is the admittance 

of transmission line ij L . Equation (4) refers to the generators’ minimum and maximum 

capacity, while equations (5) and (6) express the constraints on the ramp up and down limits, 

denoted by  iRU and  ,iRD  respectively. Equation (7) refers to demand loads’ upper ( ,

max

i td ) 

and lower bounds( ,  min

i td ), while equation (9) constraints power flow to the transmission lines’ 

ij  capacity limits ( max

ijT ). Furthermore, constraint (8) enforces MO’s decision concerning the 

power that is traded with the DNs to be not higher than the submitted offers/bids. The dual 
variables pertaining to each constraint of DC-OPF are specified in the parentheses following 
each constraint (Eqs. (3)-(9)). 
 
Following up the descriptions of previous D4.2 (chapter 6), we further mathematically 
formulate our problem by modeling the following: 

● Energy Storage Systems (ESS) 
● Shiftable loads (DSM units) 
● Underlying distribution network topology 
● MGO’s FlexOffers (i.e. quantity offers/bids) 

 

The interested reader can see all the above-mentioned mathematical models in chapter 6 of 
D4.2. 
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6.4.3. Solution method 

The formulated problem has a bi-level structure and has to be converted into a single 
optimization problem in order to be solved using a commercial solver. In our bi-level 
optimization problem, the constraining LL problem (6.2) is a Linear Program (LP) and 
therefore, Slater’s condition holds24. Thus, DC-OPF problem’s Karush-Kuhn-Tucker (KKT) 
conditions are necessary and sufficient optimality conditions (satisfy convexity and constraint 
qualification). Therefore, solving the DC-OPF is equivalent to solving its KKT conditions, which 
is a non-linear system of equations. As a result, the LL problem is converted into a set of non-
linear constraints of the UL problem, and our problem becomes a single Mixed Integer 
Nonlinear Problem (MINLP). The non-linearities coming from the complementarity 
conditions (subset of KKT conditions) are tackled using the Big-M linearization method25. The 
non-linearities in the objective function are linearized using the Strong Duality Theorem 
applied to the LL problem. Finally, the initial bi-level problem is transformed into an 
equivalent single Mixed Integer Linear Problem (MILP), which can be easily solved using a 
commercial MILP solver. 
 

6.5.1. Simulation setup 

In order to evaluate our proposed model and framework, we use a 6-bus test system with 4 
conventional generators and 2 load buses. A 15-node radial DN is connected to bus 5 (cf. 
Figure 45). The transmission grid lines, generators and load data can be found in the research 
paper26. Loads are located on nodes 1, 2, 3, 4, 6, 7, 10, 11 and 12 of the DN. Load and line 
data for the DN are based on data27 and can be found in our recent work28. We discretize the 
time horizon into 24 hourly timeslots. The interested reader can find extensive details about 
all the input data and performance evaluation results of this paper29. 
 

In the following, we consider two main case studies. The first case study called “high-RES 
penetration” considers a medium/long-term future context, in which the MGO will be 
required to make optimal RES and flexibility asset investments in order to maximize local 

                                                        
24 S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New York, 2004. 
25 J. Fortuny-Amat and B. McCarl, “A Representation and Economic Interpretation of a Two-Level Programming 
Problem”, The Journal of the Operational Research Society, vol. 32(9), pp. 783-792, Sep. 1981. 
26 E. Nasrolahpour, J. Kazempour, H. Zareipour, and W. D. Rosehart, “Impacts of Ramping Inflexibility of 
Conventional Generators on Strategic Operation of Energy Storage Facilities”, IEEE Transactions on Smart Grid, 
vol. 9(2), pp. 1334-1344, Mar. 2018. 

 27 A. Gopi, P. Ajay-D-Vimal Raj, “Distributed generation for the line loss reduction in radial distribution 

system”, in Proc. 2012 International Conference on Emerging Trends in Electrical Engineering and Energy 

Management (ICETEEM), Chennai, India, 2012, pp. 29-32. 

 28 K. Steriotis, K. Smpoukis, N. Efthymiopoulos, G. Tsaousoglou, P. Makris, E. Varvarigos, “Strategic and 

Network Aware Bidding Policy for Electric Utilities through the Optimal Orchestration of a Virtual and 

Heterogeneous Flexibility Assets’ Portfolio”, Electric Power System Research, Elsevier, vol. 184, Jul. 2020. 

 29 H2020 FLEXGRID project Github repository. Available online at: 

https://github.com/FlexGrid/Network_and_Market-aware_bidding_EnergyIslands 
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RES usage (or else minimize local RES spillage) for the sake of its local energy community 
members. On the contrary, the second case study called “low-RES penetration” considers a 
shorter-term future context, in which the MGO is mostly interested in minimizing the energy 
cost of its local energy community by optimally scheduling its RES and flexibility assets 
through temporal arbitrage.   

 

6.5.2. High-RES penetration case study 

In this case study, we evaluate the network-aware bidding property of our model to maximize 
local RES usage. We assume that the MGO acts as a price taker in the wholesale energy 
market. This means that MGO schedules its RES and flexibility assets in a market-price-
sensitivity agnostic manner. We also assume that local RES curtailment is not allowed so that 
feasibility of network flows is achieved in a zero local RES spillage context. It should be noted 
that the proposed model can also support an acceptable level of RES spillage (e.g. a maximum 
of 10% or 20% of nominal RES capacity to be curtailable), which is the today’s Business-As-
Usual process in a straight-forward manner. 
 

6.5.2.1. Impact of RES and flexibility assets’ siting in the DN 

In this subsection, we study the impact of RES siting in the MGO’s flexibility assets’ 
investment decision. First, we consider 2 cases for the locations that the RES units will be 
installed within the distribution network. In the first case, we consider nodes 2, 8, 11 and 13 
for RES installation (i.e. non-critical location case), while in the second case, we select nodes 
2, 5, 10, 11 and 13 (i.e. critical location case). By the term “critical location”, we mean that 
intermittent and variable RES assets are sited at the edge nodes of the network (i.e. nodes 5 
and 10) incurring thus greater problems in terms of local congestion and voltage 
management. We consider both types of RES (i.e. PVs and wind turbines). In both cases 
mentioned above, we have selected nodes 5, 8, 10 and 13 to install identical BSSs and we 
assume that a part of loads in nodes 2, 3, 4, 6 and 7 are flexible, resulting in a total capacity 
of 1MW flexible load. This load is assumed to operate during the peak hour (i.e. 18:00); 
however it can be shifted from 16:00 to 20:00. In each one of the two aforementioned cases, 
we examine two sub cases. In the first one, the nominal RES capacity is 1.5 times higher than 
the nominal peak load, while in the latter case, the nominal RES capacity is 2 times higher 
than the nominal peak load. The two subcases are noted in the Figure 46 below as 150% and 
200% RES penetration respectively. 

 
The following figure depicts the financial balance (profit/deficit) that MGO has as a function 
of BSS size. BSS is needed in order to keep the distribution network within its operating limits 
and avoid in this way RES spillage phenomenon. Note that the size of BSS highly depends on 
the siting and the sizing of the RES units (which is depicted and handled as an input parameter 
in the two subcases). In the figure below, zero financial balance implies infeasible distribution 
network operation. In other words, the MGO will have to pay the very high Value of Lost Load 
(VOLL) for all the time that the network is in an unstable condition. Positive and negative 
financial balance implies that MGO has profits and deficit respectively. In the Non-Critical 
location case and for 150% RES penetration, MGO needs to install at least 375 kW of total 
BSS power capacity in order to safely operate its network, while for 200% RES penetration, it 
needs to install at least 13,130kW BSS. In the critical location case and in the subcases of 
150% and 200% RES penetration, the MGO has to install at least 8,375 and 21,880 KW of BSS 



90 

 

power capacity respectively. We see that, in these specific setups and under both the Non-
Critical and Critical location cases, 200% RES penetration requires the most BSS power 
capacity and leads to more market profit for the MGO, but this comes at the expense of 
higher BSS investments. Given the very high VOLL, the eligible distribution network nodes to 
put more RES units in the future are the ones in the “non-critical” case. This is quite important 
for the MGO’s business model in order to be able to prioritize the installation of its future 
RES and respective flexibility assets in the correct nodes of the distribution network.   

 
Figure 46: MGO’s financial balance as a function of BSS size for critical and non-critical DN 

locations cases under two RES penetration subcases 

 

6.5.2.2. Impact of RES and flexibility assets’ sizing  

As far as it concerns the impact of the RES sizing on the MGO’s financial balance and based 
on siting results from the figure above, we select the eligible RES sizes in order to have 
network feasibility outcomes (i.e., we do not consider the RES sizes that produce DN 
infeasibilities above a certain and widely accepted probability). Thus, we continue only with 
the “non-critical location” network case presented above, as it would not be useful to 
consider infeasible network setups (which takes place in critical location case), where the 
MGO’s investment costs on flexibility assets would be huge. 
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Figure 47: MGO’s financial balance as a function of BSS size for different RES sizes under 

the non-critical locations case 

 
The next step is to examine the financial outcome for the MGO (either profit or deficit) under 
4 high-RES penetration scenarios. In more detail, the figure above depicts the financial 
balance of the MGO as a function of the installed BSS power capacity under 120% (cf. blue 
line), 140% (cf. red line), 160% (cf. yellow line) and 180% (cf. purple line) RES penetration 
scenarios (note that zero values of financial balance imply network infeasibility). As expected, 
based on the results of the previous subsection, for RES penetration up to 140%, the 
distribution network can operate safely even without (i.e., zero) BSS installations, but with 
1MW flexible load capacity (see non-zero financial balance values for all BSS size values). Of 
course, MGO’s financial balance increases linearly as the BSS size increases, too. For 160% 
RES penetration, the minimum total BSS capacity that is needed to ensure zero RES spillage 
is 2,400 kW, while for 180% RES, the minimum BSS power requirement is 6,500 kW. An MGO 
can reduce its daily operating cost by installing centralized BSSs or aggregating distributed 
residential storage units. The first business choice entails upfront flexibility investment costs 
for the MGO, but the advantage is that that the MGO’s operational costs are minimized. On 
the other hand, the aggregation of multiple small-scale and distributed flexibility assets 
means that the investment costs will be (mostly) paid by the end users; however large 
operational expenditures are expected for the MGO, because it has to communicate and 
coordinate the flexibility aggregation process with multiple and heterogeneous S/W agents 
and H/W infrastructures/end user installations. In order for a price taker MGO to make 
profits by selling energy to the grid, a significant amount of investment has to take place. For 
example, for 160% RES, a 5,400 kW BSS power capacity is needed. This is very important for 
the MGO, who can easily measure the CAPEX (i.e., capital expenditures) versus OPEX (i.e. 
operational expenditures) trade-off in order to incorporate this type of calculations in its 
business 91odelling process. 
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6.5.2.3. Optimal flexibility assets’ sizing and scheduling 

We now proceed to find the optimal flexibility asset size to maximize MGO’s profits for a few 
RES penetration setups. As already seen, for the specific RES and flexibility assets’ siting, up 
to 140% RES penetration is safe for the network to operate within its limits. Thus, we now 
examine 3 more conservative subcases of RES production, namely 100%, 120% and 140% RES 
penetration. 

 
Figure 48: MGO’s financial balance as a function of BSS size (optimal FlexAsset sizing to 

maximize MGO’s profits) 

 
The figure above depicts MGO’s financial balance as a function of BSS under the three 
aforementioned subcases. From this figure, one may observe that, in all RES penetration 
cases, the MGO’s financial benefit increases with the total power capacity of BSSs, up to a 
saturation point. Intuitively, this is the optimal BSS sizing. Beyond this BSS size, the MGO does 
not gain any more profit, corresponding to an over-investment context that should be 
avoided by the MGO. It is highlighted that in the higher RES penetration subcase, the MGO’s 
profits stop increasing for less BSS capacity (29,000 kW) than in the other two subcases 
(33,500 and 38,000 kW for 120 and 100% RES penetration respectively). This is because the 
less RES production capacity is installed in the distribution network, the more the flexibility 
assets are dispatched in order to maximize MGO’s profits by employing temporal arbitrage. 

 

6.5.3. Low-RES penetration case study 

So far, we have only examined high-RES penetration cases that will most probably appear in 
some years from now. But how could a MGO lower its energy costs today where it possesses 
a relatively low amount of local RES and flexibility assets and it mostly draws power from the 
higher-level transmission grid? Therefore, we now evaluate the market-aware bidding 
property of our model to minimize energy cost in a more realistic today’s low-RES 
penetration scenario. In this scenario, the MGO is a price-maker market entity (i.e., we model 
the affection in the prices of the wholesale energy market that MGO’s bidding policy has). 
We compare the price-maker algorithm to the price taker solution. In more detail, the figure 
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below depicts the MGO’s cost under six network setups with low-RES penetration (in this 
case study, the financial balance is always negative and we note it as “MG cost”). In the first 
three network setups of the following figure, we assume 80% RES penetration and in the last 
three, 60% RES penetration. In setups 1 and 4, MGO decides to invest only in DSM (i.e. 35% 
of the nominal peak load can be shifted) and not at all in BSSs. In setups 2 and 5, the MGO 
has 500 kW of BSS power installed and 30% of the nominal peak load DSM capacity. Finally, 
in setups 3 and 6, the installed BSS power capacity increases to 2,000 kW, while the DSM 
capacity remains 30% of the nominal peak load. As can be seen in the figure below, our 
algorithm outperforms the price taker solution in every setup by an average percentage of 
8% in terms of the MGO’s energy cost. This indicates that, even if its portfolio represents a 
small portion of the wholesale market, the MGO can achieve a significantly smaller energy 
cost by acting strategically and implementing our proposed model, as opposed to adopting 
the price taker solution. 

 
Figure 49: MGO’s costs (Price taker vs. price maker bidding) 

 

In FLEXGRID UCS 2.4, we dealt with the increasing RES penetration in today’s energy islands 
and rural energy communities with weak grid connections, which is expected to incur severe 
distribution network stability problems (i.e. congestion, voltage issues), especially when RES 
spillage minimization and energy costs’ minimization for the local energy community are set 
as major pre-requisites. In UCS 2.4, we consider a Microgrid Operator (MGO) that: 

 gradually decides the optimal mix of its RES and flexibility assets’ sizing, siting and 
operation,  

 respects the physical distribution network constraints in high RES penetration 
contexts, and  

 is able to bid strategically in the existing day-ahead energy market.  
 
After communicating FLEXGRID UCS 2.4 scientific results to both academic and industrial 
communities, we have come up with a short list of lessons learned that could be further 
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investigated in future R&I initiatives. The Table 13 summarizes research and business-related 
insights for each one of the lessons learned. 

 

Table 13 - Lessons learnt for UCS 2.4 

Lesson learned Research & Business insights 

Coordinated planning and scheduling of RES 
and flexibility assets may result in better 
scientific results, but a gradual decision-making 
process (e.g. yearly updates) by the MGO is also 
required for real-life applicability. 

Use of stochastic optimization modeling 
is required to account for several future 
RES and demand curves as well as future 
flexibility availability (cf. UCS 2.2 results). 

MGO should run the proposed solution 
periodically to fine-tune its RES and 
flexibility investment decisions for the 
years ahead.  

MGO/energy community should be able to 
prioritize the installations of new RES and 
FlexAssets in the “most appropriate” nodes of 
the DN or else the investments will be 
economically unsustainable and the local RES 
usage will not be efficient.  

Investments for DN upgrades should be 
coordinated with DN-level RES and 
flexibility investments. 

Interaction between TN-level and DN-
level planning processes is required in 
order to avoid over/under-investment 
phenomena. 

It may be useless to achieve high RES 
penetration levels in a local area without being 
backed up with the required local flexibility, 
because this will cause high operational costs 
due to lost load and/or lost renewable energy 
(cf. RES curtailments). 

Local RES and flexibility investment 
planning should go hand-in-hand. One 
solution is to have available flexibility (i.e. 
battery) together with each new installed 
RES asset. Another more efficient 
solution is for the MGO to strategically 
decide where and how much flexibility to 
install in its network. 

Need to smoothly and carefully proceed to the 
energy transition phase without causing more 
problems (i.e. energy cost increase, instability 
issues, under-utilization of newly installed RES). 

There is no “one size & site fits all” 
solution for every energy 
community/island/microgrid. Additional 
local needs/peculiarities/ comparative 
advantages should be taken into 
consideration for policy making.  

Need to calculate the VOLL and value of lost 
Renewable Energy vs. the RES/flexibility 
investment cost both in the short term (i.e. 
reliable DN operation) and in the long term 
(with respect to EU agenda’s targets) 

A sophisticated techno-economic analysis 
is needed by the local DSO (or MGO) to 
decide the optimal trade-off between 
network upgrades and flexibility 
procurement. 

The MGO’s financial benefit increases with the 
total power capacity of BSSs, up to a saturation 
point. Intuitively, this is the optimal BSS sizing. 
Beyond this BSS size, the MGO does not gain 
any more profit, corresponding to an over-

Coordinated actions should take place 
between a portfolio of FlexAsset 
investors (i.e. end prosumers and/or 
profit-based companies) and the local 
network operator. These actions should 
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investment context that should be avoided by 
the MGO. 

also be effectively communicated to the 
upstream network operator, too. 

In higher RES penetration scenarios, the MGO’s 
profits stop increasing for less BSS capacity. In 
other words, the less new RES production 
capacity is installed in the distribution network, 
the more the flexibility assets are dispatched in 
order to maximize MGO’s profits by employing 
temporal arbitrage. 

A thorough cost-benefit analysis is 
needed in order to find the optimal mix 
between RES and flexibility investments. 

Even if an MGO’s portfolio represents a small 
portion of the wholesale market, the MGO can 
achieve a significantly smaller energy cost by 
acting strategically and implementing a market-
aware bidding strategy, as opposed to adopting 
a “price taker” solution. 

Research on new policy measures to 
support green investments from energy 
communities at EU scale and especially at 
the edges of the energy network.  

Accurate FlexAsset modeling can significantly 
change the planning/scheduling results. The 
problem is that current models produce too 
optimistic results that may have large negative 
impact on flexibility investment decision 
making. 

More accurate FlexAsset (i.e. battery 
storage system) modeling is needed that 
is much closer to real-life operation of 
these flexibility assets (cf. UCS 2.1 
results). 

 

Need to elaborate on optimal flexibility assets’ 
scheduling policies in order to maximize profits 
through participation in several energy markets 
simultaneously, i.e. not only day-ahead energy 
but also balancing, reserve and other emerging 
distribution network level flexibility markets 
such as the ones proposed by FLEXGRID 

Co-optimize participation in several 
markets simultaneously (cf. UCS 2.3 
results). 
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7  Independent large FlexAsset Owner leases 
Storage for several Purposes to several 
Market Stakeholders (UCS 2.6) 
This chapter deals with the research problem of UCS 2.6. The idea of this UCS is to propose 
concepts and ideas, where storage (capacity and power) may be leased for an agreed period 

of time. In that manner, an ESP user may form new business strategies and lighten their 
financial burden. Rather than buying energy storage systems, the ESP would have the 
opportunity to lease exactly the required capacity and power. Large FlexAsset Owner would 
benefit from lease agreements with several market stakeholders without the need to actively 
participate in the electricity markets. 

 

High RES penetration, orientation towards the decentralized paradigm and active prosumers 
bring intermittency and uncertainty into the system. This raises the importance of DERs, 
bidirectional flow management and energy storage systems. Especially energy storage 
systems and their possibility of the temporal arbitrage offer solutions to: i) secure stable 
power supply in high RES penetration scenarios, ii) develop new business strategies and iii) 
accelerate the transition towards green energy solutions. Although their price has fallen, the 
acquisition of such systems may still present quite a financial burden. Hence, many projects 
might be (temporarily) stopped if an interested party lacks financial power to finance the 
needed capital investments. To lighten capital-intensive projects, and to stimulate projects 
that aren’t even economically viable under the current prices of the energy storage systems, 
the idea of this use case is to propose concepts and ideas where storage (in terms of capacity 
and power) may be leased for an agreed period of time. This approach aims to: i) lower power 
market financial entry barriers, enable the development of innovative business models and 
iii) stimulate greater utilization of the energy storage systems. The whole idea is inspired by 
the term “sharing economy”. The sharing economy is an economic model defined as a peer-
to-peer (P2P) based activity of acquiring, providing, or sharing access to goods and services 
that is often facilitated by a community-based on-line platform [15] . Very thorough and easy 
to read introduction to utilization of this concept in the world of energy storage systems is 
given by Lombardi et al. [16]. They introduce the concept, explain what energy storage 
systems are nowadays used for, what characterizes different technologies and how to 
incorporate all of that into a suitable and profit increasing economy sharing model. Scientific 
articles covering and analyzing the idea of a concept where some large FlexAsset owner (e.g. 
battery owner) leases storage to the interested parties is not extensive. But we have 
identified research efforts and publications that have been done following similar direction. 
Liu et al. [17] proposed a model where centralized storage facilities, owned by facility 
operator provide decentralized energy storage services to the interested parties. Benefits of 
such approach are: 

 Using the advantages of the economies of scale 
 Storage units are easier to manage (physically) when they are centralized 
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The authors got the motivation to utilize this concept from cloud computing services.  They 
named the concept – Cloud Energy Storage (CES), presented how to realize it, explained the 
business model and emphasized the following pros of such an approach: 

 CES leverages the diversity in the users’ demand for storage 
 CES is able to better schedule the battery because it has more information than an 

individual user 
 Economies of scale 
 Diverse portfolio of storage technologies 

 
[18] extends the previous article. It divides the services into energy capacity and power lease, 
showing how such model could help in reducing overall electricity prices. CES concept is also 
used in [19]. The authors have proposed a bilevel model for optimal energy storage capacity 
pricing and sizing. CES operator makes capacity pricing and sizing decision in the upper level, 
while the lower level presents consumers’ renting and operating decisions. A case study has 
been conducted on 100 household consumers in Ireland and CES concept has been 
recognized as an effective business model. [20] has expanded the CES concept even further, 
using perfect and imperfect information models to evaluate the behaviour of CES participants 
under respective information model types. The case study based on actual Irish consumer 
load profiles and prices has showed the following: 

 The unit capital of cost of energy storage has a significant effect on the value and 
profitability of CES 

 The imperfect estimation of consumer behaviour would lower the profitability of CES 
 The economies of scale of large storage facilities make CES more profitable 

 
A concept where distribution companies own storage and lease the battery capacity to the 
customers is proposed by Motyka [21]. DSO may use the batteries to over the consumption 
when renewables are not producing enough power to satisfy the demand. Such approach 
may result with lower transmission losses and minimization of the consumption peaks, but 
correct sizing of the batteries in respective node is a delicate and important task.   
 Authors in [22] presented a two-stage optimization problem to model the interaction 
between a storage aggregator and users. The aggregator virtualizes its energy storage into 
separable virtual capacities and sells them to the interested parties. Stage 1 of the problem 
is dedicated for the aggregator to determine the investment and pricing decisions, while 
stage 2 enables each user to decide the virtual capacity to purchase together with the 
operation of the virtual storage. Authors argue that their model can reduce the physical 
energy storage investment of the aggregator by 54.3% and reduce the users' total costs by 
34.7%, compared to the case where users acquire their own physical storage. The concept of 
Virtual Energy Storage System (VESS) is used in [23]. The authors demonstrate how VESS 
aggregates various controllable components of energy systems (conventional ESS, flexible 
loads, distributed generators, microgrids, local DC networks and even multi-vector energy 
systems). Those aggregated entities act on the markets as a single unit with specific 
characteristics. The authors showed on the example of VESS formed of domestic refrigerators 
and flywheel energy storage systems power system frequency response, taking care of the 
lifetime of the aggregated units.  
 
In addition to the published scientific articles, similar concepts are already introduced in the 
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private sector. Green2store 30 gathers a number of distributed energy storage units from 
users to form a large storage facility on the cloud to provide service for energy storage users, 
while Sonnenbaterie 31 installs batteries on users’ location but ordinates them in a centralized 
fashion. 

This work proposes two concepts with similar goal – energy storage capacity and power 
lease. Although two concepts differ in many characteristics, besides the similar goal, they 
share also similar benefits for the involved players. From lower market entry barriers, 
incentivizing energy storage systems utilization, accelerating RES penetration to raising social 
welfare. 
 

 
Figure 50 - Average rate of occurrences and the typical charging/discharging duration [16] 

 

The main idea of the first approach lies in the interaction between a large FlexAsset owner 
that wants to lease its storage capacity/power and a user willing to procure such service 
instead of making capital investments in new assets. For the concept to be generally 
accepted, all interested parties should feel the benefits of participating in it. Large FlexAsset 
owner should generate stable income by leasing its storage capacity and not caring 
(explicitly) about the actualities in the electricity markets (e.g. day-ahead market prices). On 
the other hands, interested parties that want to participate in the electricity markets with 
storage units but postpone (or avoid) capital investments, may find the right solution in 
procuring energy storage capacity/power from a FlexAsset owner. Important assumption is 

                                                        
30 https://www.offis.de/offis/projekt/green2store.html  
31  https://sonnengroup.com/sonnenbatterie/  

https://www.offis.de/offis/projekt/green2store.html
https://sonnengroup.com/sonnenbatterie/
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that the FlexAsset owner may acquire energy storage systems under lower prices due to the 
volume of the order (greater discount). Furthermore, FlexAsset owner may acquire various 
technologies and consequently offer greater flexibility of features while meeting customer 
preferences. Meaning that the user that procures such service should not only benefit from 
the lower prices, but also from diverse energy storage characteristics. In that manner, 
FlexAsset owner needs to take care about siting, sizing, technology mix and prices of its 
energy storage portfolio. Figure 50 nicely illustrates how users may for different purposes 
have different storage needs 
 

In the subchapter 7.2, two approaches have been discussed. One where the main research 
problem is the interaction between large FlexAsset owner that leases storage to the several 
market stakeholders, and the other where the SMO acts in a similar manner like Airbnb 
linking energy storage systems supply and demand. In the scope of this use case scenario, 
the focus will be more on the first concept. Nevertheless, both approaches will be 
investigated and then compared. 
 
 To model the interaction between the large FlexAsset owner and user(s), bilevel model 
programming will be used. Upper-level deals with the large FlexAsset services offering and 
investment, while the lower level problem models the players who are keen to procure such 
services.  
 
The second concept is based on peer-to-peer business model where SMO is a matchmaker 
between group of entities that offer energy storage capacity and power services, and other 
keen to procure it. The main task of the SMO is to provide the trading platform, regulations 
and procedures. Moreover, algorithmic solution should deal with price forming possibilities 
and matching the ones offering the service with other wanting that service.  
 

In FLEXGRID UCS 2.6, we have analyzed independent large FlexAsset Owner who may lease 
its storage for several purposes to several market stakeholders. The idea is for a user rather 
than buying energy storage systems, to have the opportunity to lease exactly the required 
capacity and power. Large FlexAsset Owner would benefit from lease agreements with 
several market stakeholders without the need to actively participate in the electricity 
markets. Although the final model is still not done, in the following months the clearer 
concept model should be done and more detailed mathematical formulation followed by 
simulation results.  

Nevertheless, initial scientific findings have been discussed to both academic and industrial 
communities. Following table summarizes research and business-related insights for each 
one of the lessons learned. 
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Table 14 - Lessons learnt for UCS 2.6 

Lesson learnt Research & Business insights 

Storage facilities require high CAPEX, hence 
a lot of projects fail the cost benefit analysis 

Bypass of CAPEX could pave the way for 
many new business opportunities and novel 
strategies, hence future research should 
focus on finding and formulating feasible 
methods that may be used in the real-life 
situations 

Battery storage units lease model success is 
highly dependent on the accurate 
monitoring of the state of energy 

For the large FlexAsset owner to be able to 
take the advantage of the lease model 
without creating and accepting unfeasible 
offers, it is of the utmost importance to  
have a clear vision of the battery storage 
unit characteristics and its condition. 
Accurate battery modelling is thus required 
so the agreed contracts are indeed feasible.  

Users require both energy and capacity 
lease models 

Different types of user are more prone to 
either energy or capacity reservation 
models, hence future research should also 
address both directions and their 
combination 

There are already some active pilot projects 
based on virtual storage units. Meaning, 
that various stakeholders understand 
possible benefits of such model.  

Industry has recognized potential benefits 
of the virtual storage models. Further 
cooperation between academia and 
industry could be extended on the 
experience gathered in the ongoing pilot 
(and commercial) projects 

The idea may be realized in various forms, 
i.e. in this chapter two considered directions 
are mentioned. 

Future work should closely analyse pros and 
cons of both approaches and discuss 
between academia and industry which 
approach has greater practical potential to 
realize it a t higher TRLs.  
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9 Conclusion 

ESP, a profit-oriented company, which may enter into contractual arrangements with various 
types of flexibility assets was the main point of interest of the WP4 work efforts. Within WP4 
of FLEXGRID, the focus of research was on the development of a S/W tool, namely 
FlexSupplier’s Toolkit (FST), that is intended to help utilizing FlexAssets in an optimal manner. 
It includes market and PV forecasting, together with models and algorithms to optimize ESP’s 
market behaviour in a holistic way (e.g. via optimal scheduling, bidding, siting and sizing 
models and algorithms). Different approaches and use case scenarios were investigated 
reflecting different types of market designs, namely different proposals of the potential 
DLFM. Concluding remarks, lessons learned and research and business insights for each 
approach are summarized in the final sections of chapters 2, 3, 4, 5, 6 and 7.  

 

The research work of WP4 will be used and integrated within the FST and FLEXGRID ATP 
(WP6). More specifically, versions of the algorithms of UCS 2.1 – “ESP’s OPEX minimization”, 
UCS 2.2 – “ESP’s CAPEX minimization” and UCS 2.3 – “ESP’s profit maximization” are now 
being integrated within the ongoing work of WP6. These FLEXGRID services will facilitate the 
ESP towards creating optimal strategies to improve its market position and allow both online 
operation for real-time support and offline operation for “what-if” simulations and testing 
under different scenarios. 

 

The research results of all use case scenarios of WP4 are Key Exploitable Results (KERs) of the 
FLEXGRID project and the research outcome will be used for the final development and 
enhancement of the business models and value proposition regarding the ESP.  

 

In the figure below, the timeline schedule of WP4 is illustrated. Milestone #9 has been 
achieved with this deliverable, which concludes all milestones of WP4. 

 

 
Figure 51 - FLEXGRID project's and WP4 timeline schedule 
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