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Acronym Definition 

D Deliverable 

HLUC High Level Use Case 
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TRL Technology Readiness Level 
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Acronym Definition 
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API Application Programming Interface 
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DLFM Distribution Level Flexibility Market 
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DSM Demand Side Management 

DSO/TSO Distribution/Transmission System Operator 

ELM Extreme Learning Machine  

ESP Energy Service Provider 

FMCT Flexibility Market Clearing Toolkit 

FMO Flexibility Market Operator 

FSP Flexibility Service Provider 

FST FlexSupplier’s Toolkit 

GUI Graphical User Interface 

ICT Information and Communication Technology 
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I-DLFM Interactive Distribution Level Flexibility Market 

KPI Key Performance Indicator 

LMP Locational Marginal Price 

MO Market Operator 

MTU Market Time Unit 

NWP Numerical Weather Prediction 

OPEX Operational Expenditures 

OPF Optimal Power Flow 

PCC Point of Common Coupling  

P-DLFM Proactive Distribution Level Flexibility Market 

RPC RES Production Curve 

R-DLFM Reactive Distribution Level Flexibility Market 

RES Renewable Energy Sources 

SLFN Single Layer Feed Forward Network 

SoC State of Charge 

SOCP Second Order Cone Programming 

S/W Software 

TER Transmission level Energy Resource  
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Executive Summary 
This report is an official deliverable of H2020-GA-863876 FLEXGRID project dealing with all 
the data modelling work of FLEXGRID’s S/W architecture. It includes the research output of 
task 6.1 and thus a detailed data model, which is a pre-requisite for the development of 
FLEXGRID S/W platform. 
 
D6.1 elaborates on almost all previous FLEXGRID deliverables1 as follows: 

 D2.1: For all High Level Use Cases (HLUC) and Use Case Scenarios (UCS) that have been 
defined in D2.1, this report specifies the exact data model that will be used in order 
to fulfill the system-level and user requirements that have been analyzed in the first 
months of the project. 

 D2.2: The FLEXGRID data model has been developed following up all the major 
architectural decisions that have been made and have been documented in D2.2. 
More specifically, this report elaborates on the draft data model for AFAT, FST and 
FMCT algorithms that has already been described in a quite abstract way in chapter 7 
of D2.2.  

 D3.1: Based on chapter 6 of D3.1 and the description of the WP3 mathematical 
models and algorithms, this report provides the final data model for the interaction 
between the AFAT’s frontend (i.e. ATP GUI) and backend services. 

 D4.1: Based on chapter 8 of D4.1 and the description of the WP4 mathematical 
models and algorithms, this report provides the final data model for the interaction 
between the FST’s frontend and backend services. 

 D5.1: Based on chapter 5 of D5.1 and the description of the WP5 mathematical 
models and algorithms, this report provides the final data model for the interaction 
between the FMCT’s frontend and backend services. 

 D8.1: The final data model that is presented in this report has been developed in a 
way that is totally in line with the initial market analysis, business modeling and the 
long list of value propositions presented in chapters 1 and 2 of D8.1. 

 
Chapter 1 of this report describes the main steps of the S/W implementation methodology 
that has been followed by the entire consortium as well as the interactions with the research 
methodology that has been adopted at the early stages of the project. FLEXGRID S/W 
architecture is modular-by-design providing thus flexibility and means for efficient 
collaborative work and exploitation after the end of project’s lifetime. A subset of the most 
important UCS have been selected to be integrated in the FLEXGRID ATP (TRL 5), while the 
residual ones are expected to be developed until TRL 3 within WP3, WP4 and WP5 and 
respective high-quality scientific papers are expected to be published in prestigious scientific 
journals and conferences. Moreover, a subset of the most important functionalities per 
selected UCS have been chosen to be integrated in FLEXGRID ATP, because the focus of 
WP6 work is not on scientific excellence (like in WP3, WP4 and WP5), but on the potential 
impact, meaning the demonstration of proof-of-concept results in a real-life S/W platform, 
which can be used directly by all interested market stakeholders and will also boost the 
FLEXGRID’s communication, dissemination and exploitation activities.    

                                                 
1 https://flexgrid-project.eu/deliverables.html  

https://flexgrid-project.eu/deliverables.html
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Chapter 2 presents detailed sequence diagrams for the proposed x-DLFM architectures, 
which are actually holistic energy market architectures that integrate the novel concept of 
“Distribution Level Flexibility Market - DLFM”. The goal of these sequence diagrams is to 
depict all existing markets and how these may interact with the proposed DLFM and also how 
the different sequence of markets affects the performance of certain KPIs. In each sequence 
diagram, various building blocks are illustrated, which represent the advanced 
mathematical models and algorithms that have been developed within WP3, WP4 and WP5 
and will be integrated in FLEXGRID ATP (WP6). Moreover, exchange of information is 
illustrated between the various building blocks and thus among the various market 
stakeholders. For each one of these arrows and building blocks, detailed data models are 
provided in chapters 3-5.    
 
In Chapter 3, we present the detailed data model for the FMO and DSO users based on the 
WP5 research work. All algorithmic inputs and outputs are described for UCS 1.1, 1.2 and 
1.3 together with UML and sequence diagrams. Based on this data modelling work provided 
by DTU, ETRA will implement the FMCT frontend and respective APIs for the communication 
between the FLEXGRID ATP, the central database and the FMCT backend (i.e. algorithms).  
 
Chapter 4 presents the detailed data model for the ESP user based on the WP4 research 
work. All algorithmic inputs and outputs are described for UCS 2.1, 2.2, 2.3 and 4.4 together 
with UML and sequence diagrams. Based on this data modelling work provided by UNIZG, 
ICCS and UCY, ETRA will implement the FST frontend and respective APIs for the 
communication between the FLEXGRID ATP, the central database and the FST backend. 
 
Chapter 5 presents the detailed data model for the aggregator user based on the WP3 
research work. All algorithmic inputs and outputs are described for UCS 4.1, 4.2 and 4.3 
together with UML and sequence diagrams. Based on this data modelling work provided by 
UCY and ICCS, ETRA will implement the AFAT frontend and respective APIs for the 
communication between the FLEXGRID ATP, the central database and the AFAT backend. 
 
Conclusively, in the following months, FLEXGRID consortium will elaborate on the data 
modeling work to deploy the FMCT/FST/AFAT frontends in FLEXGRID ATP as well as the 
Application Programming Interfaces (APIs) for the integration of the respective backend 
intelligence into the FLEXGRID ATP. Finally, the central database will be developed, 
populated with real-life historical data together with the APIs for the information exchange 
between the database and FLEXGRID ATP frontend and backend modules. Finally, it should 
be noted that although the data modeling work has finished in M18, an iterative S/W 
development process will be followed and thus the final data model may be slightly different 
from the one reported in this deliverable. Therefore, the final FLEXGRID data model will be 
delivered at the end of the project’s lifetime via D6.3.  
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1 Introduction 

 

This report aims at defining the detailed data model of FLEXGRID architecture. With the term 
“data model”, we mean the exact information exchange and communication protocols 
based on which the various market stakeholders interact with each other via the proposed 
FLEXGRID Automated Trading Platform (ATP). We also mean the algorithmic inputs and 
outputs of all FLEXGRID processes, which aims at optimizing the benefits/interests of each 
market stakeholder or the system as a whole.  
 
We have made a clear categorization of the various FLEXGRID data models throughout the 
report. One major categorization is between the proposed x-DLFM architectures. We 
propose three architectures, namely: i) Reactive DLFM (R-DLFM), ii) Proactive DLFM (P-
DLFM), and iii) Interactive DLFM (I-DLFM). We also assume the “No-DLFM” architecture as a 
benchmark in the sense that no DLFM exists in today’s EU energy markets. R-DLFM takes 
place after day-ahead energy (DA-EM) and day-ahead reserve markets (DA-RM) operated by 
the Market Operator (MO) and Transmission System Operator (TSO) respectively. P-DLFM 
takes place before the aforementioned existing markets in order to deal proactively with 
possible distribution-level congestion management and voltage control problems. Finally, I-
DLFM assumes an iterative information exchange process between the MO and FMO (i.e. 
energy markets) and the TSO and DSO (i.e. reserve and balancing markets). 
 
Another major categorization is between the FMO, DSO, ESP and aggregator users. In 
particular, we provide a detailed data model for each one of the aforementioned market 
stakeholders. For the FMO and DSO users, there is a data model for the FMCT frontend (i.e. 
what the FMO/DSO users can fill in in their GUIs in order to perform their market and 
business logic operations) and the FMCT backend (i.e. what the FMO/DSO users can visualize 
as algorithmic results in order to make further managerial actions). Following the same 
rationale, there is a data model for the ESP user and the aggregator user (cf. chapters 4 and 
5 respectively).  
 

 

This document presents the results of the FLEXGRID’s data modelling work in the context of 
Task 6.1, which took place between M13 and M18. As shown in the figure below, task 6.1 
work has been based on previous work and respective deliverables that took place within the 
first twelve months of the project’s lifetime as follows: 

 D6.1 elaborates on the high-level specifications and draft data modeling work that 
took place within WP2 as well as the business cases that have also been defined at 
the early stages of the project. 

 Detailed data models are also defined for all the mathematical models and 
algorithmic solutions that have been defined in the first phase of research work within 
WP3, WP4 and WP5. In other words, all research partners (i.e. ICCS, UCY, DTU, UNIZG-
FER) have identified the most important UCS functionalities that will be integrated in 
the FLEXGRID ATP and collaborated closely with ETRA in order to design all the GUIs 
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(i.e. ATP frontend services) as well as the APIs for the exchange of data with ATP 
backend services. 

 Finally, data modeling work was based on the FLEXGRID’s data management plan 
(DMP), which includes all types of real-life and historical datasets that will be available 
by FLEXGRID’s industrial partners (i.e. NODES, NPC, BNNETZE, HOPS, SIN) in order to 
test and validate the proposed mathematical models and algorithms. Moreover, 
based on the industrial partners’ expertise, an initial market analysis and business 
modeling work took place that gave important feedback to the research partners 
towards defining the final version of the data models.  

    

 
Figure 1: Placement of data modeling work within FLEXGRID project’s context 

 
After the end of Task 6.1 and delivery of D6.1 in M18, a set of specific activities will take place 
in order to elaborate on data modeling work’s results as follows: 

 As all data models will be translated in json format and respective swagger2 files will 
be ready for use, the deployment of all APIs and GUIs will start in M19.  

 Another major task will be the integration of all selected algorithms in the FLEXGRID 
ATP as well as the testing and validation activities that will take place during the 
Period 2. 

 Based on the data modeling work presented in chapter 2 of this report, various 
holistic FLEXGRID energy market architectures will be developed and compared 
within the lab testing work of WP7.  

 Finally, as all data models are organized in swagger files and are also available in 
FLEXGRID GitHub area 3 , the consortium’s communication activities will be more 
targeted and efficient towards identifying interesting real-life business cases in EU 
area with targeted customer segments according to the ongoing FLEXGRID’s business 
modeling work, too.    

 

                                                 
2 Swagger is a set of open source software tools for designing, building, documenting and using RESTful web 
services - https://swagger.io/  
3 https://github.com/FlexGrid  

https://swagger.io/
https://github.com/FlexGrid
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FLEXGRID research partners have already defined a clear research methodology plan in Task 
2.1. ETRA has also made a clear S/W implementation plan in Task 2.4, which is based on a 
modular-by-design approach. In the figure below, the data modelling methodology is 
illustrated. Five main steps were followed by all research partners in close collaboration with 
ETRA, which is responsible for the S/W integration and FLEXGRID ATP frontend services (i.e. 
GUIs). These five steps were followed for each individual UCS and thus proposed 
mathematical model and algorithm solution as follows: 

 Step 1: For every UCS that has been short-listed to be integrated in FLEXGRID ATP, 
the algorithmic solution is clarified in order to fit the business needs of a real-life 
market stakeholder (i.e. FMO, DSO, ESP, aggregator) that will utilize the FLEXGRID 
ATP. This means that some assumptions need to be made in order to transform the 
rather complex mathematical formulations of the research WPs (i.e. WP3, WP4 and 
WP5) into more realistic and closer to business- and regulation-related constraints.   

 Step 2: The algorithmic inputs are defined in great detail after consultation with 
industrial partners. Moreover, ETRA collaborated closely with research partners in 
order to design the FLEXGRID ATP frontend (GUI) services in a user-friendly manner. 

 Step 3: The algorithmic outputs (i.e. results) are defined in great detail after 
consultation with industrial partners. Moreover, ETRA collaborated closely with 
research partners in order to illustrate interesting views to the users that will actually 
help them in their real-life business. 

 Step 4: After the initial GUI designs and user views have been agreed, respective UML 
and sequence diagrams were designed in order to facilitate the S/W implementation 
at a later stage. The UML diagrams (one for the algorithmic inputs and another one 
for algorithmic outputs per selected UCS) will help in the development of the central 
FLEXGRID database. The sequence diagram (one per HLUC) will help in the 
development of the APIs and the exact information exchange between the 
FLEXGRID’s database, frontend and backend services. 

 Step 5: In the last step of the data modelling work, the RESTful APIs have been 
developed. This means that the raw data models (i.e. in the form of tables as shown 
in chapters 3-5 below) have been transformed into a json format that can be easily 
read by REST API servers and clients. These RESTful APIs are also available in .yml files, 
so that it can be easily visualized and potentially used by interested developers via 
online swagger editors (https://editor.swagger.io/).      

 

https://editor.swagger.io/
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Figure 2: Data modelling methodology 

 

On top of all this data modeling work, there is a holistic energy market architecture based on 
which the various market stakeholders interact with each other via the proposed FLEXGRID 
ATP. The current EU regulatory framework adopts the “no-DLFM” architecture and thus 
FLEXGRID uses it as a benchmark. This means that nowadays there is no real-life Distribution 
Level Flexibility Market (DLFM) in Europe. According to FLEXGRID, we introduce the Reactive 
DLFM (R-DLFM) architecture, which is quite close and compatible with the existing 
regulation. Within the WP6 context, FLEXGRID develops the ATP taking into consideration 
the R-DLFM model. However, FLEXGRID ATP could also support other energy market 
architectures like P-DLFM and I-DLFM in the future. Extensive simulation and emulation 
tests in a laboratory environment (i.e. TRL 4) that will compare the various x-DLFM 
architectures will take place in the context of WP7.        
 
More details about the data model of the various x-DLFM architectures are provided in 
chapter 2 of the current report. Chapters 3-5 describe the data model for each one of the 
selected UCS (or else algorithms and functionalities that will be integrated in FLEXGRID ATP). 
As a first S/W integration step, FLEXGRID will integrate the first algorithm (UCS 2.3) and 
have a live demonstration during the Period 1 Review meeting. Right after, all other UCS 
will be integrated following a similar S/W integration plan. More technical details about this 
S/W integration process are provided in D6.2 (M18).  
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2  FLEXGRID x-DLFM architectures 
As already mentioned, in WP6 work (i.e. TRL 5), we focus on the Reactive Distribution Level 
Flexibility Market (DLFM) architecture, which is the most compatible with the today’s EU 
regulatory framework.  However, in the next chapters, it is also explained under which 
assumptions could FLEXGRID algorithms be applicable for all x-DLFM architecture variants. 
Before analyzing the data model per UCS, it is important to describe how all the proposed 
FLEXGRID mathematical models and algorithms are placed in a single energy market 
architecture. For example, the timing (i.e. when?) that each algorithm runs, within which 
energy market context it runs and what is the sequence of markets that is being assumed 
are important considerations that directly affect the data model.  
 
In the following sections, we provide detailed sequence diagrams that explain the following 
holistic energy market architectures: 

 No-DLFM architecture 

 R-DLFM architecture 

 P-DLFM architecture 

 I-DLFM architecture 
 

In section 2.4 of D5.14, we provided an extensive summary of the proposed FLEXGRID x-DLFM 
architectures. Leveraging on the NPC’s expertise in energy markets’ design, as Nord Pool is 
one of the most prestigious Market Operators (MOs) in Europe, we have made the following 
realistic assumptions about the organization of FLEXGRID x-DLFM architectures: 

 The Market Operator - MO (e.g. Nord Pool) operates day-ahead and intra-day energy 
markets at the transmission network (TN) level.   

 The Flexibility Market Operator – FMO (e.g. NODES) operates day-ahead and intra-day 
energy markets at the distribution network (DN) level. This entity may also be called 
Local Market Operator (LMO). 

 The Transmission System Operator – TSO operates the day-ahead reserve and balancing 
energy markets at the TN level. 

 The Distribution System Operator – DSO operates the day-ahead reserve and balancing 
energy markets at the DN level. 

 
Within the FLEXGRID project, we assume the sequence of the 3 following markets: i) day-
ahead energy market, ii) day-ahead reserve market, and iii) near-real-time balancing energy 
market. Finally, we assume that this sequence of 3 markets may also take place for the 
distribution network level, too. 
    
In the sequence diagram below, the baseline architecture that represents the today’s 
regulatory framework (i.e. without any DLFM) is illustrated. In the horizontal axis, all basic 
energy market stakeholders are depicted, namely: 

 Market Operator (MO) 

                                                 
4 https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D5.1_final_03122020.pdf  

https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D5.1_final_03122020.pdf
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 Transmission System Operator (TSO) 

 Energy Service Provider (ESP) that uses the FLEXGRID’s FST services 

 Aggregator that uses the FLEXGRID’s AFAT services  

 Flexibility Market Operator (FMO) that uses the FLEXGRID’s FMCT services5 

 Distribution System Operator (DSO) that uses the FLEXGRID’s FMCT services 
 
In the vertical axis, the temporal sequence of markets is illustrated. For example, in the no-
DLFM architecture, where there exist no distribution-level markets, we assume 3 main 
markets, while in Reactive DLFM architecture, we assume one more market (i.e. DLFM), 
which takes place after the day-ahead energy and reserve markets and before the near-real-
time balancing market. 
 
There are also several colored boxes, which represent the FLEXGRID mathematical models 
and algorithmic solutions, whose data models are described in detail in chapters 3-5 of this 
document. More specifically, orange boxes represent WP3 algorithms (i.e. aggregator-
related), blue boxes represent WP4 algorithms (i.e. ESP-related) and purple boxes represent 
WP5 algorithms (i.e. related with FMO and DSO). There are also several black boxes that 
represent algorithms and processes that are out of FLEXGRID’s scope. This means that 
FLEXGRID does not make any novel scientific contributions in these processes, but we rather 
assume some state-of-the-art implementations in order to develop the holistic energy 
market architecture. The dotted arrows represent the results from one process, which are 
communicated to another market actor in order to serve as an input to another process.   
 

 
Figure 3: No-DLFM architecture representing the today’s EU regulatory framework 

                                                 
5 FMO is not present in the no-DLFM architecture. It is a new market entity that is introduced within FLEXGRID 
project. 
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As shown in Figure 3, the three blue boxes represent the mathematical model and 
algorithmic solution developed within UCS 2.3, whose data model is extensively analyzed in 
section 4.3 below6. These blue boxes also involve the market price forecasting algorithms 
that are developed within UCS 4.4, whose data model is extensively analyzed in section 4.4. 
The orange box of Figure 3 represents the mathematical model and algorithmic solution 
developed within UCS 4.3, whose data model is extensively analyzed in section 5.2.    
 
Within WP6, we will integrate the above-mentioned algorithms. The ESP and aggregator 
users will be able to fill in input parameters and configure a new simulation scenario in the 
FST/AFAT frontend (GUI), the respective algorithm will run in the FST/AFAT backend and 
finally the results will be visualized by the user in the FLEXGRID ATP. 
 

As already mentioned, the proposed Reactive DLFM architecture is compatible with the 
existing EU regulatory framework. This is the reason why we decided to implement it until 
TRL 5 via the deployment of FLEXGRID ATP. The respective data models of the short-listed 
UCS are extensively described in chapters 3-5.  
 

 
Figure 4: Reactive DLFM architecture (DLFM follows DA-EM and DA-RM) 

                                                 
6 In no-DLFM architecture, the ESP participates in the three existing markets, while in R-DLFM the ESP can also 
participate in the new DLFM introduced by FLEXGRID. 
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In Figure 4, the WP5 processes are also illustrated. The purple box represents the algorithm 
that dynamically generates a FlexRequest for the DSO user. This FlexRequest is a price vs. 
quantity curve for a given timeframe and location that represents the various price/quantity 
tuples that the DSO requests for a flexibility service in order to be able to deal with imminent 
local congestion and voltage control issues at a specific geographical location of its 
distribution network. The elongated purple box represents the market clearing process 
(auction-based or pay-as-bid) that should be run by the FMO. This market clearing process 
tries to match the DSO’s FlexRequests with the FlexOffers made by the ESPs and aggregators. 
This can be done via two main algorithms, namely: i) auction-based market clearing (i.e. the 
algorithm runs once after the gate closure), and ii) pay-as-bid continuous market clearing7. 
We also assume that day-ahead dispatch (DAD) results have already been published by the 
MO, so the energy “positions” of all players are known and thus are used as inputs to the 
FMO’s network-aware market clearing algorithm. Another important assumption is that the 
DLFM clearing results are used as input for the clearing of the near-real-time balancing 
market operated by the TSO. This implicitly means that the ESPs/aggregators will have to 
pay/get paid for the possible imbalances that they incur due to the change of their day-ahead 
energy “positions”, because of the fact that they had to provide their flexibility to the DSO. 
Extensive details about the exact data model of the various market clearing algorithms for 
the various flexibility products (i.e. energy, active power reserve, reactive power reserve) are 
presented in sections 3.1, 3.2 and 3.3 below.   
 
There are also four blue boxes that represent the optimal bidding algorithm for the ESP user 
that is analyzed in UCS 2.3 in section 4.3. The only difference with the no-DLFM architecture 
presented earlier is that there is one more optimized FlexOffer made by the ESP to the FMO. 
These four bids made by the ESP are co-optimized in order to maximize the ESP’s revenues. 
There is one more blue box that takes place after the DLFM clearing results are published and 
represents the ESP’s optimal scheduling algorithm in order to minimize its OPEX. The detailed 
data model for this algorithm is presented in section 4.1 and corresponds to the UCS 
algorithm 2.1.  
 
Regarding the aggregator user and the respective AFAT services, there are three orange 
boxes, which correspond to two main algorithms. The first orange box represents the optimal 
FlexOffer made by the aggregator to the FMO in the context of DLFM, while the third orange 
box represents the optimal aggregator’s bidding in the near-real-time balancing market 
operated by the TSO. The data model of this bidding process is analyzed in section 5.2 (UCS 
4.3). The second orange box represents the mathematical model and algorithmic solution of 
UCS 4.1, whose data model is analyzed in section 5.1. In particular, once the DLFM clearing 
results are published, the aggregator is informed about the FlexRequest schedule that has to 
execute. Thus, it applies a scheduling algorithm to optimally manage the FlexRequest in a 
way that maximizes the aggregator’s profits and does not violate the end user’s constraints 
that are explicitly stated and agreed in the FlexContracts.       
 

                                                 
7 The pay-as-bid market clearing algorithm is implemented by NODES platform. FLEXGRID extends this approach 
by applying a network-aware market clearing approach. 
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The basic characteristic of P-DLFM is that distribution network (DN) level markets are cleared 
before the TN-level ones, so the 3 types of DLFMs operate proactively and thus based on 
their results, the TN-level markets follow. This process can also be seen as a “DN feasibility 
check” in order to mitigate the main drawback of the aforementioned R-DLFM model, which 
is the difficulty to manage an infeasible or expensive TN-level dispatch schedule. We assume:  

 one day-ahead distribution level energy market (DA-DLEM) that takes place before 
the existing DA energy market (transmission level), and  

 one near-real-time balancing market at distribution network level that takes place 
right before the existing balancing market operated by the TSO. 

 
 

 
Figure 5: Proactive DLFM (DLFM precedes DA-EM and DA-RM) 

 
The P-DLFM sequence diagram is illustrated in Figure 5. Regarding the DLFM clearing process 
(cf. two long purple boxes), the major difference compared to R-DLFM architecture is that 
the energy product is traded and not up/down reserve products. More details about the data 
model of this market clearing process is presented in section 3.1 (UCS 1.1). Correspondingly, 
the bidding algorithms and FlexOffers can also be slightly changed in order to serve the 
purpose of the energy products that are traded in both day-ahead and near-real-time 
timeframes.  
 
Note: There are several variants of P-DLFM architecture that may be considered and are 
extensively described in section 2.4 of previous D5.1. Within the WP6 context, only the R-
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DLFM architecture will be implemented, while one basic P-DLFM variant will also be 
supported. More specifically, the assumption is that residual DN-level FlexOffers that have 
not been accepted in the DN-level markets can be automatically forwarded to the TSO via a 
dedicated API. This means that the FLEXGRID ATP can serve as a gateway (or else 
intermediary platform) that can redirect local flexibility to the transmission level in order to 
help the TSO to deal with system-level imbalances. This novel functionality is also supported 
by NODES platform in a couple of real-life pilots within the EU area.       
 

In the I-DLFM architecture model, we consider an iterative process that takes place between 
the MO and FMO and between TSO and DSO until they converge to an optimal dispatch 
schedule for both TN and DN levels. In the two figures below, the sequence diagrams for the 
MO-FMO coordination and TSO-DSO coordination are illustrated.  
 

 
Figure 6: Interactive DLEM (iterative message exchanges between MO and FMO until 

convergence) 
 

As shown in Figure 6, in the day-ahead energy market context, the MO initially runs an 
instance of its market clearing problem at the TN level and sends the results to the FMO. 
Then, the FMO takes as input the MO’s results and runs its own market clearing problem at 
the DN level. The respective results (e.g. Lagrange multipliers) are sent back to the MO, who 
runs another round of the TN-level market clearing. Of course, the dispatch schedules that 
are decided in each round of algorithm’s execution are virtual and are not actuated in reality. 
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After several algorithmic iterations (i.e. several message exchanges between MO and FMO), 
the process converges to an overall dispatch schedule (i.e. at both TN and DN levels) that 
maximizes the social welfare8.  
 
A similar iterative process shown in Figure 7 may take place for day-ahead reserve markets 
and near-real-time balancing markets (cf. TSO-DSO collaboration). We assume that day-
ahead energy dispatch results are sent by the MO to the TSO and by the FMO to DSO. It 
should be noted that the I-DLFM architecture will not be developed at TRL 5 in the context 
of WP6, but rather at TRL 3 in WP5 and at TRL 4 in WP7 (cf. lab tests using AIT’s large research 
infrastructure). I-DLFM is quite futuristic approach and is also incompatible with the existing 
EU regulation, even though it can theoretically achieve better social welfare results. 
However, the FLEXGRID data models that are followed in all I-DLFM processes are similar to 
the ones presented in the previously mentioned architectures.   
 

 
Figure 7: Interactive DLFM (iterative message exchanges between TSO and DSO until 

convergence) 

                                                 
8 By the term “social welfare”, we mean market efficiency and it is generally defined as the sum of all suppliers’ 
profits and the “profits” from the demand side (i.e. consumers’ utility minus costs).  
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3 Data model for the FMO and DSO user’s 
frontend and FMCT backend 

In this UCS, we consider a Flexibility Market Operator (FMO), who clears a local energy 
market after (i.e. R-DLEM) the transmission level commitments have been cleared. This 
means that some of the local generators and loads may already have committed parts of 
their energy to the wholesale transmission level (i.e. day-ahead energy market). The FMO 
runs a continuous pay-as-bid market, where FlexRequest from the DSO (i.e. FlexDemand side) 
and FlexOffers from ESPs (i.e. FlexSupply side) are continuously accepted and added to the 
orderbook. When the prices match, a network check is performed in order to ensure that no 
distribution network constraint is violated. Without loss of generality and within FLEXGRID’s 
context, we assume that the full network model of the DSO is known to the FMO, as well as 
the active and reactive power setpoints committed in the wholesale transmission level 
market. The aim of the FMO is to maximize social welfare by matching all bids that result in 
feasible power flows. An auction-based market clearing algorithm (i.e. pay-as-clear) will also 
be available. 
 

The novelty of the FLEXGRID’s algorithmic approach is that the FMO clears the market 
continuously (or on an auction basis) and under full consideration of network 
constraints, i.e., including line and transformer ratings, reactive power limits, and 
voltage bands. 

 

3.1.1 Proposed algorithm to integrate in FMCT 

Technical details about the mathematical model, algorithmic solution and initial performance 
evaluation results are provided in chapter 2 of D5.2 (i.e. TRL 3). Within WP6 context (i.e. TRL 
4-5), our main goal is to demonstrate that the FMO user visualizes in ATP the FlexRequest 
and FlexOffers that were accepted, and those that are rejected.  
 
This algorithm could also be applicable for all other x-DLEM architecture variants; for P-DLEM, 
if all setpoints from the wholesale market are set to zero, and for I-DLEM if the setpoint of 
active and reactive power exchange at the Point of Common Coupling (PCC) are iteratively 
exchanged between wholesale (or else transmission network level) and local (or else 
distribution network level) market levels. 
 

We distinguish two main operation modes for the FMO’s GUI, namely:  
● Online operation: The FMO user has the initiative. It accepts FlexOffers and 

FlexRequests and matches them in a continuous fashion whenever a new bid 
arrives. These cleared bids should also be made visible for the ESP user (i.e. 
FlexSeller) and DSO user (i.e. FlexBuyer). 

● Offline operation: The FMO user runs various “what-if” simulation scenarios (using 
various OPF formulations and market clearing algorithms) to identify how it can 
achieve maximum expected social welfare. Only the FMO user will be able to 
visualize the results. 
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The market clearing process of this UCS has the purpose to clear energy on the day-ahead, 
intra-day, or in real-time.  

● This traded product is defined as active power per time unit, i.e., energy in MWh/h.  
● With a short lead time, pay-as-bid is recommended, with a long lead time, auctions 

(i.e. pay-as clear) are recommended. 
 
In order to integrate the proposed mathematical model and algorithm at TRL 5, we have 
made the following assumptions: 

● We clear only active energy per time unit, in e.g.  MWh/h or kWh/(15min). 
● Single-level optimization problem (i.e. the problem of the DSO and the problem of 

the TSO can be decoupled, as long as they know/forecast their state variables). 
● The DLFM may clear before, simultaneous, or after the TSO’s reserve or balancing 

market. The important feature is that DSOs and TSO must exchange information 
about their state variables, or at least about their active and reactive power exchange 
at the interface node (i.e. TSO-DSO coupling points). 

● Convex reformulation of the Optimal Power Flow (OPF) algorithm; either a convex 
AC-OPF reformulation (SOCP) or a DC-OPF with an approximation of voltages at each 
bus. 

● For the auction-based market clearing algorithm, Distribution Locational Marginal 
Prices (dLMPs) are computed at each distribution node or zone. 

 

3.1.2 Algorithmic inputs and outputs and FMO/DSO frontend ideas 

The following tables summarize the input parameters for the algorithm to run in the FMCT 
backend and output parameters for the results to be visualized in FMO’s GUI (i.e. FMCT 
frontend) respectively.  
 

Input parameters FMO GUI in ATP Central FG database 

 Select FMO/DSO data per country 
(drop down menu with a few 
countries, e.g. Germany, Norway, 
Croatia) 

The static Mongo-DB API 
will fetch the FMO user’s 
inputs to the DB. The DB-
FMCT API will fetch the 
selected time interval 
and selected markets 
from the central DB to 
the FMCT. 

 Select time interval ‘X’ date to ‘Y’ 
date (cf. calendar) 

Energy balance forecast Forecast load and generation at 
each node (assumed as known in 
WP5) 

Distribution network data Lines with impedances, line current 
limits, bus voltage limits, bus 
voltage phase angle limits. 

Day-ahead energy market price 
quantity bids from all ESP users 
sorted by node and price 
(€/MWh)9 10 

Select for day-ahead energy market 
price data (cf. checkbox)  

Reserve market price quantity 
bids (up/down) from all ESP 

Select for reserve market price data 
(cf. checkbox) 

                                                 
9 For reserve, DLFM and balancing markets, up and down regulation prices will be used. 
10 in the case of R-DLFM 
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users sorted by node and price 

(€/MW) 9  10  

DLFM market FlexOffers (price 
quantity bids up/down) from all 
ESP users sorted by node and 
prices11 (€/MWh + €/MVar)  

Select for DLFM price data (cf. 
checkbox) 
 

The ATP-FST API will fetch 
the required data based 
on ESP user’s inputs to 
FST. 

DLFM market FlexRequests 
(price quantity bids up/down) 
from DSO sorted by node and 
prices11 (€/MWh + €/MVar) 

Select DSO location areas (insert 
number) 

The ATP-DB API will store 
the algorithmic results in 
the central DB. 

Balancing market price quantity 
bids (up/down) from all ESP 
users sorted by node and price 
(€/MWh) 

Select for balancing market price 
data (cf. checkbox) 

The DB-ATP API will 
retrieve the data from the 
central DB. 

ESP user unit specifications (fill 
in parameters in the GUI) 

Fill in (for every ESP user unit – the 
user can add several units):  
- power capacity (kW) 
- energy capacity (kWh) 
- location of unit (node) 

The ATP-FST API will fetch 
the required data based 
on ESP user’s inputs to 
FST. 

Type of market clearing 
algorithm 

Select from drop-down menu: 
- pay-as-bid 
- pay-as-clear 

Type of market clearing 
algorithm 

Type of optimal power flow Select from dropdown menu: 
- Second order cone relaxation of 
AC-OPF 
- DC-OPF with approximations of 
losses and voltages 

Type of optimal power 
flow 

(Optional: Active power 
exchange from TSO)  

Default value is 0 (Optional: Active power 
exchange from TSO) 3 

(Optional: Reactive power 
exchange from TSO)  

Default value is 0  

(Optional: Excess active power 
FlexOffers not cleared in the FM, 
available for DLFM)  

Default value is 0  

 
 

Output parameters FMO GUI in ATP Central FG database 

dLMP for all distribution nodes 
 

A graph that depicts:  
- Aggregate Quantity offered vs. 

price 
- Price accepted vs. node 
 
The ESP and DSO users should also 
be able to visualize these curves on 
their own GUIs. 

 

Quantity of active power, i.e., 
energy per time period for all 
distribution nodes 

A graph that depicts the accepted 
price vs. node 

The FMCT-ATP API will 
fetch the results from the 
FMCT to ATP. 

                                                 
11 We assume a few location areas (cf. “polygons” concept from NODES platform) with different LMPs. 
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The FMCT-DB API will 
store the same results to 
the central DB. 

Voltages at all distribution nodes A graph that depicts the voltages vs. 
node 

 

Power flows over all distribution 
lines 

A graph that depicts the power 
flows vs. lines 

 

Voltage angles at all distribution 
nodes 

A graph that depicts the voltage 
angles vs. node 

 

(Optional: Active power 
exchange with TSO)12 

  

(Optional: Reactive power 
exchange with TSO) 12 

  

(Optional: Excess energy 
FlexOffers not cleared in the 
DLFM, available for TSO’s 
balancing market) 12 

A graph that depicts:  
- Aggregate unaccepted quantity 

vs. price 
- Unaccepted price vs. node 

 

 

3.1.3 UML diagrams 

 
Figure 8: UML diagram for the ATP-FMCT API of UCS 1.1, UCS 1.2 and UCS 1.3 (i.e. FMO user’s 

inputs filled in FMCT frontend and posted to FMCT backend) 

 

                                                 
12 in the case of P-DLFM. 
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Figure 9: UML diagram for the ATP-FMCT API of UCS 1.1, UCS 1.2 and UCS 1.3 (i.e. algorithmic 

results produced by FMCT backend and visualized in FMCT frontend) 

 
The two figures above depict the UML diagrams for UCS 1.1, UCS 1.2 and UCS 1.3 (the 3 of 
them share the same structure of inputs and outputs). The first one is the data model 
representation of the input parameters described in the table above regarding the ATP-FMCT 
API. The second one is the data model representation of the output parameters described in 
the table above regarding the FMCT-ATP API.     
 

In this UCS, we consider a Flexibility Market Operator (FMO), who clears a local active power 
reserve market after (R-DLFM) the transmission level commitments have been cleared. This 
means that some of the local generators and loads may already have committed parts of 
their energy and/or reserve to the wholesale transmission level. The FMO runs a continuous 
pay-as-bid market where FlexRequest from the DSO and FlexOffers from FSPs are 
continuously accepted and added to the orderbook. When the prices match, a network check 
is performed in order to ensure that no network constraint is violated. Without loss of 
generality and within FLEXGRID’s context, we assume that the full network model of the DSO 
is known to the FMO, as well as the active and reactive power setpoints committed in the 
wholesale transmission level market. The aim of the FMO is to maximize social welfare by 
matching all bids that result in feasible power flows. An auction-based market clearing 
algorithm (i.e. pay-as-clear) will also be available. In this algorithm, the FMO will gather all 
FlexRequests and FlexOffers for a given timeframe. When the gate closes, no other bids will 
be accepted and the network-aware auction-based market clearing algorithm will run. 
 

The novelty of the FLEXGRID’s algorithmic approach is that the FMO clears the market 
continuously (or on an auction basis) and under full consideration of network 
constraints, i.e., including line and transformer ratings, reactive power limits, and 
voltage bands. A second contribution is that this algorithm ensures that any combination 
of reserve activation is feasible for the network, opposed to current approaches, where 
one feasible reserve activation suffices. 

 

3.2.1 Proposed algorithm to integrate in FMCT 

Technical details about the mathematical model, algorithmic solution and performance 
evaluation results are provided in chapter 3 of D5.2 (i.e. TRL 3). Within WP6 context (i.e. TRL 
4-5), our main goal is to demonstrate that the FMO user visualizes in ATP the FlexRequest 
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and FlexOffers that were accepted, and those that are rejected together with other 
important information that is presented below.  
 
This algorithm could also be applicable for all other x-DLFM architecture variants; for P-DLFM 
if all setpoints from the wholesale market are set to zero, and for I-DLFM if the setpoint of 
active and reactive power exchange at the PCC are iteratively exchanged between wholesale 
and local market levels. 
 

We distinguish two main operation modes for the FMO’s GUI, namely:  
● Online operation: The FMO user has the initiative. It accepts FlexOffers and 

FlexRequests and matches them in a continuous fashion whenever a new bid 
arrives. These cleared bids should also be made visible for the FSP user (i.e. 
FlexSeller) and DSO user (i.e. FlexBuyer). 

● Offline operation: The FMO user runs various “what-if” simulation scenarios to 
identify how it can achieve maximum expected social welfare. Only the FMO user 
will be able to visualize the results. 

 
The market clearing has the purpose to procure a vital DSO reserve service:  

 Congestion Management Reserve: This reserve product consists of active power 
reserves (up- and downward) that are paid for their reserve power, but may not 
necessarily be activated in real-time.  

 
In order to integrate the proposed mathematical model and algorithm at TRL 5, we have 
made the following assumptions: 

● We clear only active power reserves, not energy. 
● Single-level optimization problem (i.e. the problem of the DSO and the problem of 

the TSO can be decoupled, as long as they know/forecast their state variables). 
● The DLFM may clear before, simultaneous, or after the TSO’s FM. The important 

feature is that DSOs and TSO must exchange information about their state variables, 
or at least about their active and reactive power exchange at the interface node. 

● Convex reformulation of the Optimal Power Flow (OPF) algorithm; either a convex 
AC-OPF reformulation (SOCP) or a DC-OPF with an approximation of voltages at each 
bus. 

● For the auction-based market clearing algorithm, Distribution Locational Marginal 
Prices (dLMPs) must be computed at each distribution node. 

 

3.2.2 Algorithmic inputs and outputs and FMO/DSO frontend ideas 

The following tables summarize the input parameters for the algorithm to run in the FMCT 
backend and output parameters for the results to be visualized in FMO’s GUI (i.e. FMCT 
frontend) respectively.  
 

Input parameters FMO GUI in ATP Central FG database 

 Select FMO/DSO data per country 
(drop down menu with a few 
countries, e.g. Germany, Norway, 
Croatia) 

The ATP-DB API will fetch 
the FMO user’s inputs to 
the DB. The DB-FMCT API 
will fetch the selected time 
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 Select time interval ‘X’ date to ‘Y’ 
date (cf. calendar) 

interval and selected 
markets from the central 
DB to the FMCT Energy balance forecast Forecast load and generation at 

each node 

Distribution network data In the form of a distribution 
network ID: Lines with 
impedances, line current limits, 
bus voltage limits, bus voltage 
phase angle limits. 

Day-ahead energy market price 
quantity bids from all ESP users 
sorted by node and price 
(€/MWh) 

Select for day-ahead energy 
market price data (cf. checkbox)  

Reserve market price quantity 
bids (up/down) from all ESP 
users sorted by node and price 
(€/MW) 

Select for reserve market price 
data (cf. checkbox) 

DLFM market price quantity bids 
(up/down) from all ESP users 
sorted by node and prices 
(€/MWh + €/MVar)  

Select for DLFM price data (cf. 
checkbox) 
 

DLFM market FlexRequests 
(price quantity bids up/down) 
from DSO sorted by node and 
prices (€/MWh + €/MVar) 

Select DSO location areas (insert 
number) 

Balancing market price quantity 
bids (up/down) from all ESP 
users sorted by node and price 
(€/MWh) 

Select for balancing market price 
data (cf. checkbox) 

ESP user unit specifications (fill 
in parameters in the GUI) 

Fill in (for every ESP user unit – the 
user can add several units):  
- power capacity (kW) 
- energy capacity (kWh) 
- location of unit (node) 

The ATP-FMCT API will fetch 
the required data based on 
ESP user’s inputs to FMCT. 

Type of market clearing 
algorithm 

Select from dropdown menu: 
- pay-as-bid 
- pay-as-clear 

 

Type of optimal power flow Select from dropdown menu: 
- Second order cone relaxation of 
AC-OPF 
- DC-OPF with approximations of 
losses and voltages 

 

(Optional: Active power 
exchange from TSO) 

Default value is 0 The ATP-FMCT API will fetch 
the required data from the 
TSO’s inputs to FMCT (Optional: Reactive power 

exchange from TSO)  
Default value is 0 

(Optional: Excess active power 
FlexOffers not cleared in the 
TSO’s reserve market, available 
for DLFM) 

Default value is 0 
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Output parameters FMO GUI in ATP Central FG database 

dLMP for all distribution nodes 
 

A graph that depicts:  
- Aggregate Quantity offered vs. 

price 
- Price accepted vs. node 
 
The ESP and DSO users should also 
be able to visualize these curves 
on their own GUIs. 

 

Quantity of active power reserve 
for all distribution nodes 

A graph that depicts the accepted 
price vs. node 

The FMCT-ATP API will fetch 
the results from the FMCT 
to ATP. 
 
The FMCT-DB API will store 
the same results to the 
central DB. 

Votages at all distribution nodes A graph that depicts the voltages 
vs. node 

 

Power flows over all distribution 
lines 

A graph that depicts the power 
flows vs. lines 

 

Voltage angles at all distribution 
nodes 

A graph that depicts the voltage 
angles vs. node 

 

(Optional: Active power 
exchange with TSO)13 

Double type value  

(Optional: Reactive power 
exchange with TSO) 13 

Double type value  

(Optional: Excess active power 
FlexOffers not cleared in the 
DLFM, available for TSO’s 
reserve market) 13 

A graph that depicts:  
- Aggregate unaccepted 

quantity vs. price 
- Unaccepted price vs. node 

 

 

3.2.3 UML diagrams 

Taking into account the inputs and outputs of this UCS are the same also for UCS 1.1 and 
UCS1.3, the same UML diagrams depicted in Section 3.1.3 also apply to this UCS.  
 

In this UCS, we consider a Flexibility Market Operator (FMO), who clears a local reactive 
power reserve market after (R-DLFM) the transmission level commitments have been 
cleared. This means that some of the local generators and loads may already have committed 
parts of their energy and/or reserve to the wholesale transmission level. The FMO runs a 
continuous pay-as-bid market where FlexRequest from the DSO and FlexOffers from ESPs are 
continuously accepted and added to the orderbook. When the prices match, a network check 
is performed in order to ensure that no network constraint is violated. Without loss of 

                                                 
13 in the case of P-DLFM 
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generality and within FLEXGRID’s context, we assume that the full network model of the DSO 
is known to the FMO, as well as the active and reactive power setpoints committed in the 
wholesale transmission level market. The aim of the FMO is to maximize social welfare by 
matching all bids that result in feasible power flows. An auction-based market clearing 
algorithm (i.e. pay-as-clear) will also be available. In this algorithm, the FMO will gather all 
FlexRequests and FlexOffers for a given timeframe. When the DLFM gate closes, no other 
bids will be accepted and the network-aware auction-based market clearing algorithm will 
run to clear the market. 
 

The novelty of the FLEXGRID’s algorithmic approach is that the FMO clears the market 
continuously (or on an auction basis) and under full consideration of network 
constraints, i.e., including line and transformer ratings, reactive power limits, and 
voltage bands. A second contribution is that this algorithm ensures that any combination 
of reserve activation is feasible for the network, opposed to current approaches, where 
one feasible reserve activation suffices. 

 

3.3.1 Proposed algorithm to integrate in FMCT 

Technical details about the mathematical model, algorithmic solution and performance 
evaluation results are provided in chapter 3 of D5.2 (i.e. TRL 3). Within WP6 context (i.e. TRL 
4-5), our main goal is to demonstrate that the FMO user visualizes in ATP the FlexRequest 
and FlexOffers that were accepted, and those that are rejected together with other 
important information that is presented below.  
 

This algorithm could also be applicable for all other x-DLFM architecture variants; for P-DLFM 
if all setpoints from the wholesale market are set to zero, and for I-DLFM if the setpoint of 
active and reactive power exchange at the PCC are iteratively exchanged between wholesale 
level and local levels. 
 

We distinguish two main operation modes for the FMO’s GUI, namely:  
 Online operation: The FMO user has the initiative. It accepts FlexOffers and 

FlexRequests and matches them in a continuous fashion whenever a new bid 
arrives. These cleared bids should also be made visible for the FSP user (i.e. 
FlexSeller) and DSO user (i.e. FlexBuyer). 

 Offline operation: The FMO user runs various “what-if” simulation scenarios to 
identify how it can achieve maximum expected social welfare. Only the FMO user 
will be able to visualize the results. 

 
The market clearing has the purpose to procure a vital DSO reserve service:  

 Voltage Management Reserve: This reserve product consists of reactive power 
reserves (up- and downward) that are paid for their reserve power, but may not 
necessarily be activated in real-time.  

 

 

In order to integrate the proposed mathematical model and algorithm at TRL 5, we have 
made the following assumptions: 

 We clear only reactive power reserves, not energy. 
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 Single-level optimization problem (i.e. the problem of the DSO and the problem of 
the TSO can be decoupled, as long as they know/forecast their state variables). 

 The DLFM may clear before, simultaneous, or after the TSO’s reserve market. The 
important feature is that DSOs and TSO must exchange information about their state 
variables, or at least about their active and reactive power exchange at the interface 
node. 

 Convex reformulation of the Optimal Power Flow (OPF) algorithm; either a convex AC 
OPF reformulation (SOCP) or a DC OPF with an approximation of voltages at each bus. 

 For the auction-based market clearing, Reactive Distribution Locational Marginal 
Prices (qLMPs) must be computed at each distribution node. 

 

3.3.2 Algorithmic inputs and outputs and FMO/DSO frontend ideas 

The following tables summarize the input parameters for the algorithm to run in the FMCT 
backend and output parameters for the results to be visualized in FMO’s GUI (i.e. FMCT 
frontend) respectively.  
 

Input parameters FMO GUI in ATP Central FG database 
 

Select FMO/DSO data per country 
(drop down menu with a few 
countries, e.g. Germany, Norway, 
Croatia) 

The ATP-DB API will fetch the 
FMO user’s inputs to the DB. 
The DB-FMCT API will fetch the 
selected time interval and 
selected markets from the 
central DB to the FMCT 

 
Select time interval ‘X’ date to ‘Y’ 
date (cf. calendar) 

Energy balance forecast Forecast load and generation at 
each node 

Distribution network data In the form of a distribution 
network ID: Lines with 
impedances, line current limits, 
bus voltage limits, bus voltage 
phase angle limits. 

Day-ahead energy market 
price quantity bids from all 
ESP users sorted by node 
and price (€/MWh) 

Select for day-ahead energy 
market price data (cf. checkbox)  

Reserve market price 
quantity bids (up/down) 
from all ESP users sorted by 
node and price (€/MW) 

Select for reserve market price 
data (cf. checkbox) 

DLFM market price 
quantity bids (up/down) 
from all ESP users sorted by 
node and prices (€/MWh + 
€/MVar)  

Select for DLFM price data (cf. 
checkbox) 
 

DLFM market FlexRequests 
(price quantity bids 
up/down) from DSO sorted 
by node and prices (€/MWh 
+ €/MVar) 

Select DSO location areas (insert 
number) 
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Balancing market price 
quantity bids (up/down) 
from all ESP users sorted by 
node and price (€/MWh) 

Select for balancing market price 
data (cf. checkbox) 

ESP user unit specifications 
(fill in parameters in the 
GUI) 

Fill in (for every ESP user unit – the 
user can add several units):  
 power capacity (kW) 
 energy capacity (kWh) 
 location of unit (node) 

The ATP-FMCT API will fetch the 
required data based on ESP 
user’s inputs to FMCT 

Type of market clearing 
algorithm 

Select from dropdown menu: 
- pay-as-bid 

- pay-as-clear 

 

Type of optimal power flow Select from dropdown menu: 
- LinDistFlow 

 

(Optional: Active power 
exchange from TSO)  cf. 
R-DLFM case 

Default value is 0 The ATP-FMCT API will fetch the 
required data from the TSO’s 
inputs to FMCT. 

(Optional: Reactive power 
exchange from TSO)  cf. 
R-DLFM case 

Default value is 0 

(Optional: Excess reactive 
power FlexOffers not 
cleared in the FM, available 
for DLFM)  cf. R-DLFM 
case 

Default value is 0 

 
 

Output parameters FMO GUI in ATP Central FG database 

dLMP for all distribution 
nodes 

 

A graph that depicts:  
 Aggregate Quantity offered vs. 

price 
 Price accepted vs. node 
 

The ESP and DSO users should also 
be able to visualize these curves on 
their own GUIs. 

 

qLMP for all distribution 
nodes 

A graph that depicts:  
 Aggregate Quantity offered vs. 

price 
 Price accepted vs. node 
 

The ESP and DSO users should also 
be able to visualize these curves on 
their own GUIs. 

The FMCT-ATP API will fetch the 
results from the FMCT to ATP. 
 

The FMCT-DB API will store the 
same results to the central DB. 
 

Quantity of active power 
reserve for all distribution 
nodes 

A graph that depicts the accepted 
price vs. node 

The FMCT-ATP API will fetch the 
results from the FMCT to ATP. 
 



33 
 

Quantity of reactive power 
reserve for all distribution 
nodes 

A graph that depicts the accepted 
price vs. node 

The FMCT-DB API will store the 
same results to the central DB. 

Voltages at all distribution 
nodes 

A graph that depicts the voltages 
vs. node 

 

Power flows over all 
distribution lines 

A graph that depicts the power 
flows vs. lines 

 

Voltage angles at all 
distribution nodes 

A graph that depicts the voltage 
angles vs. node 

 

(Optional: Active power 
exchange with TSO)  cf. 
P-DLFM case 

Double type value  

(Optional: Reactive power 
exchange with TSO)  cf. 
P-DLFM case 

Double type value  

(Optional: Excess active 
power FlexOffers not 
cleared in the DLFM, 
available for TSO’s reserve 
market)  cf. P-DLFM case 

A graph that depicts:  
 Aggregate unaccepted 

quantity vs. price 
 Unaccepted price vs. node 

 

 

3.3.3 UML diagrams 

Taking into account the inputs and outputs of this UCS are the same also for UCS 1.1 and UCS 
1.2, the same stricture of UML diagrams depicted in Section 3.1.3 above also apply to this 
UCS.  
 

As already discussed, we will integrate three UCS (and respective network-aware market 
clearing algorithms) in the Flexibility Market Clearing Toolkit (FMCT). The S/W architecture 
follows a modular-by-design approach, which allows the different S/W modules to be 
developed on a standalone basis by the various partners and communicate with each other 
via well-defined and fine-grained APIs. The following figure describes in five main steps the 
process that will be followed. There are three main S/W components that will be developed, 
namely: 

 ATP GUI or else FMCT frontend: this will be developed by ETRA. 

 FMCT backend: this will be developed by DTU (cf. UCS 1.1 – 1.3). 

 FLEXGRID Central Database: this will be developed by ETRA, while real-life input data 
will be provided by DTU (in collaboration with other consortium partners, too). 

 
First of all, the FMO user will login the FLEXGRID ATP, will be authenticated through a single 
sign-on process and then will be redirected to the main FMO’s GUI. Via the FMCT application, 
the FMO user will be able to visualize, configure and manage the DLFM under consideration. 
Three main products are considered: i) active power (energy) product (cf. UCS 1.1), ii) active 
power reserve product (cf. UCS 1.2), and iii) reactive power reserve product (cf. UCS 1.3). 
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Moreover, the FMO user will be able to run the DLFM clearing algorithms in order to decide 
on optimal dispatch decisions that minimize the flexibility procurement cost and 
communicate them to the involved stakeholders (i.e. DSO and ESPs). 
 
For each one of the three algorithms, there will be a tab in the FMCT frontend. Once the FMO 
user clicks on one tab, s/he will be able to configure/customize/fill in the input parameters 
that are needed for each algorithm to be able to run. Once the FMO user clicks on the “Run 
algorithm” button, step 1 process will be followed14. More specifically, the API client that 
resides at the FMCT frontend will automatically gather all input parameters and will send 
them to the API server that resides at the FMCT backend. 
 
After the FMCT backend receives the input parameters, the next step is to request for the 
required input data from the FLEXGRID central database (DB). More specifically, an API client 
that resides at FMCT backend may request for input data from an API server residing at the 
central DB. In step 3, the input data is retrieved, and now the algorithm can be executed.  
 
Once the algorithm produces the results, these output parameters will be automatically 
gathered by the FMCT-ATP API and will be sent to the FMCT frontend so that the FMO user 
can visualize the results in a comprehensive and user-friendly manner. The final step (i.e. step 
5) is for the FMO user to understand the results and if s/he is interested in further elaborating 
on them, then s/he can optionally select to store them in the central DB in order to be able 
to retrieve, visualize and possibly compare them with other market clearing results in the 
future.      

 
Figure 10: Sequence diagram for communication among ATP frontend, FMCT backend and central 

FLEXGRID database 

 

                                                 
14 More technical details about the steps depicted in Figure 10 are provided in FLEXGRID D6.2. 
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4  Data model for the ESP user’s frontend and 
FST backend 

In this UCS, we consider a profit-oriented Energy Service Provider (ESP), who owns a set of 
Battery Storage Units (BSUs). In the case that the model is not network-aware, the location 
of the BSUs is not relevant, but only their characteristics (e.g. capacity, efficiency, etc.). On 
the TRL 5 level, we consider: 1) Day-ahead energy market (DA-EM), 2) Reactive Distribution 
Level Flexibility Market (R-DLFM) and 3) Balancing Market (BM). The ESP user participates in 
the DA-EM and has the opportunity to maximize its profits by taking part in DLFM, too. 
However, such market behaviour may lead to a change in the agreed DA-EM schedule and 
this will mean that the ESP will have to pay/or get paid for the imbalances that it created in 
the BM.  
 

In order for the ESP to meet the FlexRequest requirements and maximize profit, an 
optimal scheduling algorithm is utilized. More specifically, the FLEXGRID optimal 
scheduling algorithm aims to minimize ESP’s operational expenses as sub-optimal 
strategies may significantly reduce profits and even potentially endanger sustainability 
of the company’s business model.  

 

4.1.1 Proposed algorithm to integrate in FST 

Technical details about the mathematical model, algorithmic solution and initial performance 
evaluation results are provided in chapter 3 of D4.1 and chapter 3 of D4.2 (i.e. TRL 3). Within 
WP6 context (i.e. TRL 5), our main goal is to demonstrate that the ESP user is able to visualize 
its operational expenses (OPEX), categorized per different criteria (e.g. type of asset, point in 
time). From the numerical data and visualizations, the ESP user should gain insight what could 
possibly lower/increase its OPEX if changes are made in the DA-EM schedule. More precisely, 
the ESP user should be able to compare the new schedule (i.e. after responding to a 
FlexRequest in intra-day timeframe) versus the old one (i.e. the DA-EM schedule that has 
been agreed in the day-ahead timeframe).  
 

We distinguish two main operation modes for the ESP’s GUI, namely: 

 Online operation: We assume that the day-ahead energy market (DA-EM) dispatch 
is given and should be respected by the ESP. Then, a FlexRequest issued by 
DSO/TSO needs to be met by the ESP. Both DA-EM dispatch and the FlexRequest 
should be made visible for the ESP user. The updated/new schedule (i.e. result of 
the proposed optimal scheduling algorithm) should also be made visible to the DSO 
and FMO user. 

 Offline operation: The ESP user runs various “what-if” simulation scenarios 
assuming various FlexRequests and FlexAsset portfolios. The goal is to assess the 
ESP’s hypothetical participation in the proposed DLFM in the future in a way that is 
profitable for its business operation. Only the ESP user will be able to visualize these 
results. 
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In order to integrate the proposed mathematical model and algorithm at TRL 5 (i.e. in the 
FLEXGRID ATP), we have made the following assumptions: 

 We solve a single-level optimization problem (i.e. ESP is price-taker). 

 We assume that the ESP user is not network-aware (specific case would be the one 
where ESP is also a DSO or in close relationship with the DSO). 

 We assume that all FlexOffers in the proposed DLFM will be accepted. 

 The predicted market prices are taken as a parameter, or in the case of the offline 
operation – historical market prices are taken as parameter. 

 We assume that the network data is provided, should (in a specific case) the model 
be network-aware. 

 We assume that the R-DLFM architecture is adopted, because this is the most 
compatible with the existing EU regulatory framework. 

 

4.1.2 Algorithmic inputs and outputs and ESP frontend ideas 

The following tables summarize the input parameters for the algorithm to run in the FST 
backend and output parameters for the results to be visualized in ESP’s GUI (i.e. FST frontend) 
respectively.  
 

Input parameters ESP GUI in ATP  Central FG database   
Select MO/TSO data per country (drop 
down menu with a few countries, e.g. 
Germany, Norway, Croatia) 

The ATP-FST API will 
fetch the required data 

based on ESP user’s 
inputs to FST. The DB-
FST API will fetch the 
required market price 
data, schedules and 

FlexRequests from the 
selected country, 

selected time interval 
and day-ahead market 
from the central DB to 

the FST. 

 
Select time interval ‘X’ date to ‘Y’ date (cf. 
calendar) 

Day-ahead energy 
market price data: a 
vector of 24-hourly price 
values per selected day 
and country (€/MWh) 

Select for day-ahead energy market price 
data (cf. checkbox)  

Day-ahead energy 
schedule 

Fill in or choose from an existing one 

FlexRequest Fill in or choose from an existing one 

Balancing market price 
data: vector of 24-hourly 
price values per selected 
day and country 
(€/MWh) 
 

Fill in or choose from an existing one 

Storage unit 
specifications (fill in 
parameters in the GUI) 

Fill in (for every storage unit – the user can 
add several units):  
 power capacity (KW) 
 energy capacity (KWh) 
 inefficiency rate (%) 
 initial/final SoE (%) 
 location of storage unit (location id) 

The ATP-FST API will 
fetch the required data 
based on ESP user’s 
inputs to FST. 

RES and consumption 
data 

Fill in or choose from existing data that is 
available in the DB 

The ATP-FST API will 
fetch the required data 
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based on ESP user’s 
inputs to FST. 

Option to store data in 
the central FLEXGRID 
database 

Checkbox that can be either checked or not. The ATP-DB API will store 
the algorithmic results in 
the central DB. 

Past OPEX minimization 
scenarios 

The ESP can select a past scenario to view it 
in the FST GUI. 

The DB-ATP API will 
retrieve the data from 
the central DB. 

 
 

Output parameters ESP GUI in ATP Central FG database 

One optimized FlexOffer 
curve per selected market  
24-hourly vector of (quantity) 
for the given timeframe  

A graph per selected market that 
depicts: 
 Quantity offered vs. time 

The FMO and DSO users should also 
be able to visualize these curves on 
their own GUIs. 

The FST-ATP API will fetch 
the results from the FST to 
ATP. 
 
The ATP-DB API will store 
the same results to the 
central DB. 

Revenues (€) per selected 
market and scenario 

A graph per selected market that 
depicts: 
 Excessive revenues (€) from 

participating in the DLFM 

 
Only the ESP user visualizes these 
results. 

The FST-ATP API will fetch 
the results from the FST to 
ATP. 
 
The ATP-DB API will store 
the same results to the 
central DB. 

Scheduling A graph that depicts: 
 Old vs. new schedule per 

controllable FlexASset 

Only the ESP user visualizes these 
results 

The FST-ATP API will fetch 
the results from the FST to 
ATP. 
 
The ATP-DB API will store 
the same results to the 
central DB 

 

According to the information above, a draft version of the ESP GUI sketches has been 
developed by ETRA as well as the first version of the FST-ATP-DB APIs. Indicative screenshots 
and more technical details can be found in D6.2. 
 

4.1.3 UML diagrams for UCS 2.1 

The following two figures depict the UML diagram for UCS 2.1. The first one is the data model 
representation of the input parameters described in the table above regarding the ATP-FST 
API. The second one is the data model representation of the output parameters described in 
the table above regarding the FST-ATP API. 
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Figure 11: UML diagram for the ATP-FST API of UCS 2.1 (i.e. ESP user’s inputs filled in FST frontend 

and posted to FST backend) 
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Figure 12: UML diagram for the ATP- FST API of UCS 2.1 (i.e. algorithmic results produced by FST 

backend and visualized in FST frontend) 

 

In this UCS, we consider a profit-oriented Energy Service Provider (ESP), who may already 
own various FlexAssets and wants to possibly invest in new ones in the future. Those 
FlexAssets (emphasizing mainly on the Battery Storage Units for the TRL 3) may be located 
on various nodes of a radial distribution network. Depending on the ESP’s insight into the 
network topology given by a respective DSO, the respective level of granularity may vary from 
the node resolution to the division of the observed radial network into several zones15. For 
the WP6 purposes, the ESP is assumed to participate in the following markets: 1) Day-ahead 
energy market (DA-EM), 2) Reserve market (RM), 3) Reactive Distribution Level Flexibility 
Market (R-DLFM).  
 

The ESP’s CAPEX minimization problem focuses on the use of a FlexAsset siting and sizing 
algorithm, when deciding on ESP's future investments on new FlexAssets. It is formulated 
as a single-level problem with a network-aware approach. Although the respective ESP 
might not have a full insight of the network topology, the most important information 
about the zones, determined by the respective DSO upon some criteria (similarly to the 
NODES approach), are provided. Moreover, CAPEX minimization problem is dependent 
on various given conditions (e.g. ESP wants to reduce OPEX by 5% by investing in new 
FlexAssets) and circumstances on the observed markets. Hence, OPEX should also be 
considered, while tackling the CAPEX minimization problem. Such an approach should 
enable efficient exploitation of available instruments to ensure reliable energy supply 
with the minimum CAPEX. The main novelty lies on the inclusion of R-DLFM and DN-
aware approach. 

 

                                                 
15 This approach is adopted by NODES flexibility market. NODES follows a hierarchical structure for dividing the 
DN topology into several location areas/zones. 
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4.2.1 Proposed algorithm to integrate in FST 

Technical details about the mathematical model, algorithmic solution and performance 
evaluation results are provided in chapter 5 of D4.1 and chapter 4 of D4.2 (i.e. TRL 3). Within 
WP6 context (i.e. TRL 5), our main goal is to demonstrate ESP user’s ability to visualize its 
total investment costs with respect to the given objective (e.g. 5% or 10% OPEX reduction). 
Furthermore, it should be easy to categorize the costs per different criteria (type of asset and 
its main characteristics, asset location, network status). In such manner, the ESP user should 
have a better insight why is a specific investment (on RES and/or FlexAssets) needed and 
what benefits (in addition to costs) it brings. In other words, both the minimum size of the 
new FlexAsset to install and its location should be visualized.  
 

The ESP user runs various “what-if” simulation scenarios (only offline operation) : 

 Offline operation: The ESP user runs various “what-if” simulation  scenarios 
assuming various mixes of FlexRequests and FlexAsset portfolios. ESP assumes a 
given OPEX reduction target (e.g. 5%) and tries to find the minimum CAPEX to meet 
this target. Moreover, we assume a few DSO areas. Each DSO area may have 
different DLFM price series, thus implying the potential DN-level 
congestion/voltage problems. Only the ESP user will be able to visualize the results. 

 

In order to integrate the proposed mathematical model and algorithm at TRL 5, we have 
made the following assumptions: 

 We formulated the model as a single-level optimization problem (i.e. ESP is price-
taker). 

 The model is network-aware (at least following NODES platform’s design approach). 

 We assume that the ESP has the possibility to participate in various electricity 
markets. 

 We assume that ESP and DSO may be one entity or at least the DSO provides some 
high-level topology data (cf. NODES platform’s design approach). 

 We assume data transparency. 

 We take the predicted (or historical) market prices as an input parameter. 
 

4.2.2 Algorithmic inputs and outputs and ESP frontend ideas 

The following tables summarize the input parameters for the algorithm to run in the FST 
backend and output parameters for the results to be visualized in ESP’s GUI (i.e. FST frontend) 
respectively.  
 

Input parameters ESP GUI in ATP Central FG database  
Select MO/TSO data per 
country (drop down menu 
with a few countries, e.g. 
Germany, Norway, Croatia) 

The ATP-FST API will fetch the 
required data based on ESP user’s 
inputs to FST. The DB-FST API will 

fetch the required market price data 
from the selected country, selected 
time interval and selected markets 

from the central DB to the FST. 

 
Select time interval ‘X’ date 
to ‘Y’ date (cf. calendar)  
Select users from the 
previously selected MO/TSO 
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Day-ahead energy market 
price data: a vector of 24-
hourly price values per 
selected day and country 
(€/MWh) 

Select for day-ahead energy 
market price data (cf. 
checkbox)  

Reserve market (e.g. 
secondary or tertiary) price 
data (up/down): a vector of 
24-hourly price values per 
selected day and country 
(€/MW) 

Select for reserve market 
price data (cf. checkbox) 

DLFM market price data: a 
vector of 24-hourly price 
values per selected day, 
location area and type of 
service (€/MWh + €/MVar)  

Select for DLFM price data 
(cf. checkbox) 
Select DSO location areas 
(insert location id, e.g. 1, 2, … 
for a given TSO area) 

Balancing market price 
data: a vector of 24-hourly 
price values per selected 
day and country (€/MWh) 

Select for balancing market 
price data (cf. checkbox) 

Network topology data (fill 
in the parameters in the 
GUI or fetch from the DB) 

Select from the few pre-
saved network topologies or 
fill in the required 
parameters. Among other, it 
includes data about existing 
FlexAssets 

The ATP-FST API will fetch the 
required data based on ESP user’s 
inputs to FST or from the pre-saved 
network topologies in the central DB 

Specifications both of 
current storage units in 
ESP’s portfolio (if any) and 
potential ones (fill in 
parameters in the GUI) 
 
Some predefined should 
already be stored in the 
central DB 

Fill in (for every storage unit 
– the user can add several 
units):  
 power capacity (KW) 
 energy capacity (KWh) 
 inefficiency rate (%) 
 initial/final SoE (%) 
 location of storage unit 

(location id) 

The ATP-FST API will fetch the 
required data based on ESP user’s 
inputs to FST or from the pre-saved 
ones in the central DB. 

OPEX reduction target (%) Fill in the value The ATP-FST API will fetch the 
required data based on ESP user’s 
inputs to FST 

Specifications of potential 
FlexAssets (fill in 
parameters in the GUI) 
 
Some predefined should 
already be stored in the 
central DB 

Fill in the values or choose 
from the existing ones 

The ATP-FST API will fetch the 
required data based on ESP user’s 
inputs to FST or from the pre-saved 
ones in the central DB. 

Constraints regarding 
viable locations for 
potential new FlexAssets 
and budget constraints (if 
any) 

Fill in the forbidden locations 
and maximum budget. 

The ATP-FST API will fetch the 
required data based on ESP user’s 
inputs to FST or from the pre-saved 
ones in the central DB. 
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Option to store data in the 
central FLEXGRID database 

Checkbox that can be either 
checked or not. 

The ATP-DB API will store the 
algorithmic results in the central DB. 

Various CAPEX 
minimization scenarios 

The ESP can select a past 
scenario to view it in the FST 
GUI. 

The DB-ATP API will retrieve the data 
from the central DB. 

 

 

Output parameters ESP GUI in ATP Central FG database 

Revenues (€) per 
selected market and 
scenario 

A graph per selected market that depicts: 
 Revenues (€) vs. market 

 

Only the ESP user visualizes these results. 

The FST-ATP API will fetch 
the results from the FST to 
ATP. 
 

The ATP-DB API will store 
the same results to the 
central DB. 

Siting (location in the 
grid) and Sizing 
(kW/kWh) 
 

 

Show the minimum size of new FlexAssets 
to install and in which DSO area.  
Only the ESP user visualizes these results. 

The FST-ATP API will fetch 
the results from the FST to 
ATP. 
 

The ATP-DB API will store 
the same results to the 
central DB 

CAPEX (€) 
 

Show the required indicative investment 
budget (euros) for the assumed  timeframe 
(e.g. 1 year) and RoI (in years). 
 

Only the ESP user visualizes these results. 
 

The FST-ATP API will fetch 
the results from the FST to 
ATP. 
 

The ATP-DB API will store 
the same results to the 
central DB 

 
According to the information above, a draft version of the ESP GUI sketches has been 
developed by ETRA as well as the first version of the FST-ATP-DB APIs. Indicative screenshots 
and more technical details can be found in D6.2. 
 

4.2.3 UML diagrams for UCS 2.2 

The following two figures depict the UML diagram for UCS 2.2. The first one is the data model 
representation of the input parameters described in the table above regarding the ATP-FST 
API. The second one is the data model representation of the output parameters described in 
the table above regarding the FST-ATP API. 



43 
 

 
Figure 13: UML diagram for the ATP-FST API of UCS 2.2 (i.e. ESP user’s inputs filled in FST frontend 

and posted to FST backend) 

 

 
Figure 14: UML diagram for the ATP- FST API of UCS 2.2 (i.e. algorithmic results produced by FST 

backend and visualized in FST frontend) 
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In this UCS, we consider a profit-seeker Energy Service Provider (ESP), who owns a set of 
Battery Storage Units (BSUs) located at various nodes of a radial distribution network. In 
order to maximize its profits, the ESP may participate in several energy/reserve markets and 
dynamically optimize its bidding strategy. Without loss of generality and within FLEXGRID’s 
context, we assume the ESP’s participation in four markets: 1) Day-Ahead Energy Market (DA-
EM) operated by the MO, 2) Day-Ahead Reserve Market (DA-RM) operated by the TSO, 3) 
Day-Ahead Distribution-Level Flexibility Market (DA-DLFM) operated by a novel market entity 
called Flexibility Market Operator (FMO), and 4) Balancing Market (BM) operated by the TSO.  
 

The objective function of the ESP’s problem is to maximize its aggregated profits from the 
four aforementioned markets. The novelty of the FLEXGRID’s mathematical model and 
algorithmic approach is that the ESP co-optimizes its participation in various markets 
instead of simply participating in each one of them individually in a sequential manner. 
As far as the day-ahead wholesale energy market is concerned, the ESP decides the BSUs’ 
operation schedule by taking as input the nodal price, which corresponds to the node of 
the transmission grid at which the distribution network is connected. Secondly, the ESP 
makes profit by providing upward and downward reserves in the DA-RM. The 
upward/downward reserve prices are obtained from the reserve market clearing process 
and are the same throughout the transmission grid. Thirdly, the ESP participates in the DA-
DLFM by providing flexibility services to the DSO (i.e. active and reactive power (P-flexibility 
and Q-flexibility) based on nodal prices within the distribution network). Finally, the ESP 
participates in the near-real-time BM to balance its portfolio. 

 

4.3.1 Proposed algorithm to integrate in FST 

Technical details about the mathematical model, algorithmic solution and performance 
evaluation results are provided in chapter 5 of D4.1 and chapter 5 of D4.2 (i.e. TRL 3). Within 
WP6 context (i.e. TRL 5), our main goal is to demonstrate that the ESP user visualizes in ATP 
its business profits by simultaneously participating in a different combination of the afore-
mentioned markets. Of course, profits will be more if the ESP participates simultaneously in 
more markets.  
 

We distinguish two main operation modes for the ESP’s GUI, namely:  

 Online operation: The ESP user has the initiative. It takes market price forecasting 
data for the four markets (i.e. DA-EM, DA-RM, DA-DLFM and BM) and calculates 
four optimal energy/Flex offers to submit in ATP. These offers should also be made 
visible for the FMO user (i.e. DLFM operator) and DSO user (i.e. FlexBuyer). 

 Offline operation: The ESP user runs various “what-if” simulation scenarios via 
running a stacked revenue maximization algorithm to identify how it can achieve 
maximum expected profits. Only the ESP user will be able to visualize the results. 

 
In order to integrate the proposed mathematical model and algorithm at TRL 5, we have 
made the following assumptions: 

 We assume a single-level optimization problem (i.e. ESP is price-taker, not price-
maker), instead of the more complex bi-level optimization model that has been 
developed within WP4 context. 
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 We do not take into account the underlying network model. In other words, we 
assume that all FlexOffers do not cause any network/grid problems. 

 We assume that all FlexOffers will be accepted, so the FlexAssets (batteries) will be 
accordingly scheduled. 

 We may assume that historical market prices are the real ones (especially for the 
offline operation). If we use the “market price forecasting” module developed by UCY 
(see section 4.4 below), then we should first run the forecasting algorithm, which 
takes as input a selected market price data series and produces as output the forecast 
market price data series. Then, we assume that the latter data series will be the real 
market prices at the time of delivery. 

 We assume that the R-DLFM architecture is adopted, because this is the most 
compatible with the existing EU regulatory framework. 

 

4.3.2 Algorithmic inputs and outputs and ESP frontend ideas 

The following tables summarize the input parameters for the algorithm to run in the FST 
backend and output parameters for the results to be visualized in ESP’s GUI (i.e. FST frontend) 
respectively.  
 

Input parameters ESP GUI in ATP Central FG database 

 Select MO/TSO data per country 
(drop down menu with a few 
countries, e.g. Germany, Norway, 
Croatia) 

The ATP-FST API will fetch 
the required data based on 
ESP user’s inputs to FST. 
The DB-FST API will fetch 
the required market price 
data from the selected 
country, selected time 
interval and selected 
markets from the central 
DB to the FST. 

 Select time interval ‘X’ date to ‘Y’ 
date (cf. calendar) 

Day-ahead energy market price 
data: a vector of 24-hourly price 
values per selected day and 
country (€/MWh) 

Select for day-ahead energy 
market price data (cf. checkbox16)  

Reserve market (e.g. secondary 
or tertiary) price data 
(up/down): a vector of 24-hourly 
price values per selected day 
and country (€/MW)17 

Select for reserve market price 
data (cf. checkbox) 

DLFM market price data: a 
vector of 24-hourly price values 
per selected day, location area 
and type of service18 (€/MWh + 
€/MVar)  

Select for DLFM price data (cf. 
checkbox) 
Select DSO location areas (insert 
location id, e.g. 1, 2, … for a given 
TSO area) 

                                                 
16 If the ESP user checks the checkbox, then the data from the respected market will be retrieved from the 
database. If not, then we assume a simulation scenario in which the ESP does not participate in a given market.  
17 For reserve market, up and down regulation prices will be used. 
18 We assume a few location areas (cf. “polygons” from NODES platform) with different LMPs. We also assume 
2 types of services for the DN: i) d-LMPs for local congestion management problem and ii) q-LMPs for voltage 
control problem. We assume that we use realistic DLFM prices based on NODES experience and international 
literature. We also assume that the price of up/down regulation is the same. 
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Balancing market price data19: a 
vector of 24-hourly price values 
per selected day and country 
(€/MWh) 

Select for balancing market price 
data (cf. checkbox) 

Storage unit specifications (fill in 
parameters in the GUI) 

Fill in (for every storage unit – the 
user can add several units):  

- power capacity (KW) 
- energy capacity (KWh) 
- inefficiency rate (%) 
- initial/final SoC (%) 
- location of storage unit 

(location id) 

The ATP-FST API will fetch 
the required data based on 
ESP user’s inputs to FST. 

Option to store data in the 
central FLEXGRID database 

Checkbox that can be either 
checked or not! 

The ATP-DB API will store 
the algorithmic results in 
the central DB. 

Stacked revenue scenarios to 
view in FST GUI (ATP) 

The ESP can select a past scenario 
to view it in the FST GUI. 

The DB-ATP API will retrieve 
the data from the central 
DB. 

  
 

Output parameters ESP GUI in ATP Central FG database 

One optimized energy/Flex offer 
curve per selected market --> 24-
hourly vector of (quantity, time) for 
the given market price (i.e. ESP is a 
pricer-taker)20  

A graph per selected 
market that depicts: 
 Quantity offered vs. 

time 
 

The FMO and DSO users 
should also be able to 
visualize these curves on 
their own GUIs. 

The FST-ATP API will fetch 
the results from the FST to 
ATP. 
 

The ATP-DB API will store the 
same results to the central 
DB (if option has been 
selected by ESP user → see 
above). 

Revenues (€) per selected market and 
scenario21 

A graph per selected 
market that depicts: 
 Revenues (€) vs. 

market 
 

Only the ESP user 
visualizes these results. 

The FST-ATP API will fetch 
the results from the FST to 
ATP. 
 

The ATP-DB API will store the 
same results to the central 
DB. 
(if option has been selected 
by ESP user → see above). 

 
The data model of UCS 2.3 is currently the most mature one and can be found in FLEXGRID 
GitHub area22. For more convenience and easier use of FLEXGRID services after the end of 

                                                 
19 We may also assume that the price of up/down regulation is the same for the balancing market. 
20 We will have 6 curves in the same graph, namely: i) day-ahead energy (positive & negative quantity values), 

ii) reserve (one curve for up-regulation quantity and one curve for down/regulation quantity), iii) DLFM (one 
curve for active (P) power quantity and one curve for reactive power (Q) quantity), iv) Balancing energy (positive 
& negative power quantity values).   
21 In the x axis, we will have 4 markets (one bar per market showing the revenues in the y axis). 
22 https://github.com/FlexGrid/atp_service  

https://github.com/FlexGrid/atp_service
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the project’s lifetime, we provide the FLEXGRID API data models in the form of swagger (and 
.yaml) files. For example, the next figure provides an indicative screenshot of this service. 
 
 

 
Figure 15: Example of swagger file for UCS 2.3 API data model 

 
 
According to the information above, a draft version of the ESP GUI sketches has been 
developed by ETRA as well as the first version of the FST-ATP-DB APIs. Indicative screenshots 
and more technical details can be found in D6.2. It should also be noted that UCS 2.3 
algorithm will be fully integrated in FLEXGRID ATP by M21 and a respective live 
demonstration will take place during the Period 1 review meeting on 22/06/2021.   
 

 

4.3.3 UML diagrams for UCS 2.3 

The following two figures depict the UML diagram for UCS 2.3. The first one is the data model 
representation of the input parameters described in the table above regarding the ATP-FST 
API. The second one is the data model representation of the output parameters described in 
the table above regarding the FST-ATP API.     
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Figure 16: UML diagram for the ATP-FST API of UCS 2.3 (i.e. ESP user’s inputs filled in FST frontend 

and posted to FST backend) 

 
Figure 17: UML diagram for the FST-ATP API of UCS 2.3 (i.e. algorithmic results produced by FST 

backend and visualized in FST frontend) 
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In this UCS, we deal with two forecasting problems, namely: i) PV generation forecasting, and 
ii) market price forecasting. In the following two subsections, we provide relevant 
information for these two problems.  
 

4.4.1 PV generation forecasting 

4.4.1.1 Proposed algorithm to integrate in FST 

Advanced generation forecasting tool should be developed that will provide dynamic 
estimation of RES production curves (RPCs) based on historical and other data for specific 
geographical locations. These forecasts will help in hedging the ESP’s risks and allow the 
sustainable commercial exploitation of the energy produced by RES. 
 

A set of cutting-edge machine learning models (Bayesian Regularised Neural Network 
(BRNN)) and methods are proposed for the PV generation forecasting problem. BRNN 
utilises the Bayes-Newton regularisation to minimise the weights of the neural network 
and consequently minimise the error of the model. BRNN are very efficient in terms of 
computational time and processing, while the number of input parameters (or else 
features) that are required to adapt to the behaviour of a specific PV plant or for a larger 
aggregation area, are minimum. 

● Online operation: The PV generation forecasting tool requires as input parameters 

numerical weather prediction (NWP) and sun angles (elevation and azimuth) data 

to calculate the day-ahead PV power generation forecast. The models will be 

trained based on historical NWP data and power measurements. 

● Offline operation: The forecasting models will be trained with historical 

parameters only (no live training will be performed), while the PV generation 

forecasting output will be based only on historical parameters. 

 
Assumptions: 

● Historical data (NWP and power measurements) will be provided for at least 6-8 

months (fewer months could also be utilised but with decreased accuracy). 

● Aggregated data will be provided for specific areas to provide aggregated DA PV 

production forecasting. If aggregated data is not available, the UCY will aggregate the 

data from specific points. 

● The NWP data will be provided to the UCY in order to provide day-ahead PV 

generation forecast. 

 

4.4.1.2 Algorithmic inputs and outputs and ESP frontend ideas 

The following tables summarize the input parameters for the algorithm to run in the FST 
backend and output parameters for the results to be visualized in ESP’s GUI (i.e. FST frontend) 
respectively. 
 

Input parameters ESP GUI in ATP Central FG database 

 Select data per country (drop 
down menu with a few countries, 

The ATP-FST API will fetch 
the required data based on 
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e.g. Cyprus, Germany, Norway, 
Croatia). 

ESP user’s inputs to FST. 
The DB-FST API will fetch 
the required data from the 
selected country and 
selected time interval from 
the central DB to the FST. 

 Select time interval ‘X’ date to ‘Y’ 
date (cf. calendar) – [YYYY-MM-
DD hh:mm:ss]. 

Nominal installed capacity of the 
PV system [W]. 

Fill in the nominal installed 
capacity of the PV system in W. 

PV system coordinates (latitude, 
longitude). 

Fill in the PV system coordinates in 
decimal degrees format: 

● Latitude (e.g. 35.21474) 

● Longitude (e.g. 33.25541). 

Historical measured Pac power 
data [W]. 

Download button that includes 
the template (“download.csv” 
file) of the csv file that needs to be 
uploaded. 
 
Upload button to upload the 
historical data in CSV file: 
Timestamp (YYYY-MM-DD 
hh:mm:ss), Historical NWP - GHI 
(𝑊/𝑚2 ), Historical NWP - Tamb 
(˚C), Historical measured - Pac (W).  

Historical NWP data: 
● Historical forecasted 

GHI or GPOA [𝑊/𝑚2] 

● Historical forecasted 

Tamb [˚C]. 

Day-ahead (48 points – half-hour 
resolution) NWP data per PV 
system location area: 

● GHI or GPOA [𝑊/𝑚2] 

● Tamb [˚C]. 

Download button that includes 
the template (“download.csv” 
file) of the csv file that needs to be 
uploaded. 
 
Upload button to upload the NWP 
data per PV system location are in 
CSV file: Timestamp (YYYY-MM-
DD hh:mm:ss), NWP - GHI (𝑊/
𝑚2), NWP - Tamb (˚C). 

 

 

Output parameters ESP GUI in ATP Central FG database 

Day-ahead PV power generation 
forecast [W] - 48 points (half-
hour resolution) 

A Line graph that depicts: 
● PV power generation forecast 

[W] vs Timestamp [YYYY-MM-

DD hh:mm:ss]  

● The FST-ATP API will 

fetch the results from 

the FST to ATP. 

● The ATP-DB API will 

store the results to the 

central DB. 

 

4.4.2 Market price forecasting 

4.4.2.1 Proposed algorithm to integrate in FST 

Technical details concerning the mathematical model, algorithmic solution and performance 
evaluation results are provided in Chapter 2 of D4.1 and Chapter 2 of D4.2. The goal of the 
algorithm is to create a reliable forecasting tool that will be used to forecast the Day-Ahead 
24 electricity values and their corresponding confidence intervals using historical data from 
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specific areas and forecasts of other variables such as weather conditions and power 
demand. This tool will help to address the risks and thereby will provide insights to ESP’s 
bidding, scheduling and planning processes (cf. UCS 2.1-2.3) in view of increasing its profits. 
 

The algorithm will be based on the Extreme Learning Machine (ELM) method. This 
algorithm is a single layer feed-forward network (SLFN) having the important feature of 
the short learning period. The algorithm would be able to run both online and offline as 
described below:  

 Online operation: The algorithm requires historical data, through which it will be 

trained. Historical data from the day-ahead energy market or any other auction-

based energy market (e.g. balancing market) as well as forecasts of other related 

variables pertaining to weather conditions and energy demand will be used as 

inputs to the algorithm. As output, the day-ahead forecasted 24 values of electricity 

along with the corresponding confidence intervals will be provided. 

 Offline operation: The ESP can use the available data as described above to carry 

out simulations of different scenarios in order to assess their validity with respect 

to several forecast accuracy KPIs. 

 
Assumptions: 

 The data of 72 hourly values are entered as input to the algorithm. 

 Available data will be used, depending on the market in which the ESP would like to 

get the forecast prices. 

 

4.4.2.2 Algorithmic inputs and outputs and ESP/aggregator frontend ideas 

The following tables summarize the input parameters for the market price forecasting 
algorithm to run in the FST backend and output parameters for the results to be visualized in 
ESP’s GUI (i.e. FST frontend) respectively. 
 

Input parameters ESP GUI in ATP Central FG database 

 Select MO/TSO data per country 
(drop down menu with a few 
countries, e.g. Germany, Norway, 
Croatia) 

The ATP-FST API will fetch 
the required data based on 

ESP user’s inputs to FST. 
The DB-FST API will fetch 
the required market price 

data from the selected 
country, selected time 
interval and selected 

markets from the central 
DB to the FST. 

 Select ‘X’ date for forecast (cf. 
calendar) – [dd/MM/yyyy ] 

Day-ahead energy market price 
data: a vector of 72-hourly price 
values per selected day and 
country (€/MWh) 

Select for day-ahead energy 
market price data 

Selection of data from any 
auction-based market with 
uniform pricing:  a vector of 72-
hourly price values per selected 
day and country (€/MWh) 

Select for corresponding energy 
market price data 

Day ahead weather forecast   
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Output parameters ESP GUI in ATP Central FG database 

One curve with day-ahead 24-
hourly vector for the given 
timeframe  

A graph that depicts: 
- 24 day-ahead hourly prices vs. 

time (dd/MM/yyyy, 
HH:mm:ss) 

 
 

The FST-ATP API will fetch 
the results from the FST to 
ATP. 
 
The ATP-DB API will store 
the same results to the 
central DB. 

Confidence Intervals and Market 
Forecast Accuracy Level 

  

 

4.4.3 UML diagrams for UCS 4.4 

The following four figures depict the UML diagrams for UCS 4.4: 

 The first one is the data model representation of the input parameters related with 
the PV generation forecasting described in the table above regarding the ATP-FST API.  

 The second one is the data model representation of the output parameters related 
with the PV generation forecasting described in the table above regarding the FST-
ATP API.   

 The third one is the data model representation of the input parameters related with 
the market price forecasting described in the table above regarding the ATP-FST API.  

 The fourth one is the data model representation of the output parameters related 
with the market price forecasting described in the table above regarding the FST-ATP 
API.     

 

 
Figure 18: UML diagram for the ATP-FST API of UCS 4.4 for PV generation forecast (i.e. ESP user’s 

inputs filled in FST frontend and posted to FST backend) 
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Figure 19: UML diagram for the FST-ATP API of UCS 4.4 for PV generation forecast (i.e. algorithmic 

results produced by FST backend and visualized in FST frontend) 

 

 
Figure 20: UML diagram for the ATP-FST API of UCS 4.4 for market price forecasting (i.e. ESP user’s 

inputs filled in FST frontend and posted to FST backend) 

 

 
Figure 21: UML diagram for the FST-ATP API of UCS 4.4 for market price forecasting (i.e. 

algorithmic results produced by FST backend and visualized in FST frontend) 

 

As already discussed, we will integrate four UCS in the FlexSuppliers’ Toolkit (FST). The S/W 
architecture follows a modular-by-design approach, which allows the different S/W modules 
to be developed on a standalone basis by the various partners and communicate with each 
other via well-defined and fine-grained APIs. The following figure describes in five main steps 
the process that will be followed23. There are three main S/W components that will be 
developed, namely: 

 ATP GUI or else FST frontend: this will be developed by ETRA. 

 FST backend: this will be developed collaboratively by UNIZG (cf. UCS 2.1 & 2.2), ICCS 
(UCS 2.3) and UCY (UCS 4.4). 

                                                 
23 More technical details about the steps depicted in Figure 22 are provided in FLEXGRID D6.2. 
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 FLEXGRID Central Database: this will be developed by ETRA, while real-life input data 
will be provided by each one of the three research partners. 

 
First of all, the ESP user will login the FLEXGRID ATP, will be authenticated through a single 
sign-on process and then will be redirected to the main ESP’s GUI. Via the FST application, 
the ESP user will be able to visualize, configure and manage its FlexAssets. Moreover, the ESP 
user will be able to run four main algorithms in order to be able to make optimal scheduling 
(cf. UCS 2.1), planning (cf. UCS 2.2), bidding (cf. UCS 2.3) and forecasting decisions (cf. UCS 
4.4).  
 
For each one of the four algorithms, there will be a tab in the FST frontend. Once the ESP 
user clicks on one tab, s/he will be able to configure/customize/fill in the input parameters 
that are needed for each algorithm to be able to run. Once the ESP user clicks on the “Run 
algorithm” button, step 1 process will be followed. More specifically, the API client that 
resides at the FST frontend will automatically gather all input parameters and will send them 
to the API server that resides at the FST backend. 
 
After the FST backend receives the input parameters, the next step is to request for the 
required input data from the FLEXGRID central database (DB). More specifically, an API client 
that resides at FST backend request for input data from an API server residing at the central 
DB. In step 3, the input data is retrieved, and now the algorithm can be executed.  
 
Once the algorithm produces the results, these output parameters will be automatically 
gathered by the FST-ATP API and will be sent to the FST frontend so that the ESP user can 
visualize the results in a comprehensive and user-friendly manner. The final step (i.e. step 5) 
is for the ESP user to understand the results and if s/he is interested in further elaborating 
them, then s/he can optionally select to store them in the central DB in order to be able to 
retrieve, visualize and possibly compare them with other results in the future.      

 
Figure 22: Sequence diagram for communication among ATP frontend, FST backend and central 

database 
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5 Data model for the aggregator user’s 
frontend and AFAT backend 

In this UCS, we consider a commercial and independent aggregator entity, whose objective 
is to increase its profits from selling various flexibility services by optimally representing and 
managing his aggregated flexibility portfolio consisting of DERs of end users. End users are 
motivated to participate in the aggregator’s portfolio with monetary incentives, which are 
established through appropriate FlexContracts.   
 

The aggregator’s objective is to maximize its profits from participation in the flexibility 
market. This translates to maximization of the revenues and minimization of the 
associated costs. The revenues of the aggregator increase with positive responses to 
FlexRequests. The associated costs can be divided into two categories. The first are end-
user compensations for provision of flexibility, defined in FlexContracts. The second 
involves potential imbalance costs, meaning the financial effect of activating flexibility and 
deviating from the baseline (scheduled energy profile of the flexibility assets). Presence of 
imbalance costs depends on the interaction of the flexibility market with other existing 
energy markets. 

 

5.1.1 Proposed algorithm to integrate in AFAT 

The more complex problem formulation and technical details of mathematical/system 
model, algorithmic solution, simulation setup performance evaluation results for reaching 
the objective of the aggregator, when managing a FlexRequest-Activation are analyzed in 
chapter 3 of D3.1 and chapter 2 of D3.2 (TRL 3). The goal of the implementation of UCS 4.1 
in WP6 (TRL 5) is the demonstration and visualization of the portfolio of the aggregator user 
and the profits (revenues-costs) of effectively responding to FlexRequests.  
 

The independent aggregator user visualizes in AFAT the profit of accepting a FlexRequest 
and the “consequences”/remaining flexibility of its portfolio after the positive response. 
The goal is to deviate from the baseline only by the amount of energy of the FlexRequest, 
which was accepted by the aggregator. This requires appropriate selection of FlexAssets to 
activate/dispatch based on cost and effects on future time slots. 
 
Two modes of operation are considered: 

● Online operation: A new FlexRequest-Dispatch is published in real-time and the 
aggregator has to dynamically decide the updated dispatch per flexibility asset / 
end user. For a sequence of FlexRequests, there are iterative runs of the algorithm. 

● Offline operation: The aggregator performs “what-if” simulation scenarios 
(different configurations of FlexContracts (e.g. cost, availability), 
expansion/modification of portfolio, different sequence of FlexRequests) to 
determine strategies for optimal response to future FlexRequests, creating 
FlexContracts and expanding its portfolio. 
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In order to integrate the proposed mathematical model and algorithm at TRL 5, the following 
assumptions are made: 

 The flexibility request is a FlexRequest-Dispatch/Activation, where a positive 
response from the aggregator requires the dispatch/activation of flexibility assets.  

 The underlying network model is not taken into account. The dispatch/activation of 
flexibility assets does not cause network/grid problems. 

 Potential imbalance costs, if needed, will be based on available historical prices of 
markets (intraday market or balancing market). 

 The minimum Market Time Unit (MTU) is 15 minutes. This stands for energy 
requested by FlexRequests and flexibility information of the FlexAssets. 

 We assume simple types of FlexContracts, which allow the majority of information 
concerning the cost of activation of each FlexAsset for each MTU to be known a priori. 

 
This algorithm, with some small modifications, can be used for all instances of x-DLFM 
architectures, as the focus is the interaction between the aggregator and its customers/end-
users (i.e. B2C) and not on the interaction of the aggregator with the energy or flexibility 
market (i.e. B2B). 
 

5.1.2 Algorithmic inputs and outputs and aggregator frontend ideas 

The required inputs for the UCS 4.1 algorithm to run are: 

 Information on the aggregator’s portfolio of FlexAssets 

 Reserved flexibility obligations of the aggregator 

 FlexRequest-Dispatch information 

 Location and Date 

 Market data   
 
The outputs of the algorithm are the following: 

● Response to FlexRequest (Accept/Reject) 
● Dispatched/Activated FlexAssets for fulfilling the FlexRequest 
● Updated Table of aggregator’s portfolio 
● Aggregator and end-user profits (revenue, costs) 

 
In the following tables, the input and output parameters of the algorithm running in the AFAT 
backend and the visualization of the information and results in the aggregator’s GUI (AFAT 
frontend) are summarized. 
 

Input parameters Aggregator GUI in ATP Central FG database 

 Select location and date (drop-
down menu for bidding zones & 
calendar) 

 

Table of FlexAssets with 
information for each MTU: 
- Baseline Consumption 
- Actual Consumption 
- Availability  
- Amount of Flexibility  
- Cost 

Select Aggregator’s portfolio 
(drop-down menu with default 
scenarios and customized 
scenarios saved by the user) 
 
Portfolio – Visualization of Table 
of FlexAssets 

The ATP-DB API will fetch 
the required data 
(depending on the user’s 
input) from the central DB 
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- Grid Location 
- End-user 

The ATP-AFAT API will fetch 
the required data based on 
user’s inputs to AFAT 

 Options to modify Aggregator’s 
portfolio  
- Remove FlexAsset 
- Add FlexAsset 
- Modify parameters of FlexAsset  
 
Store scenario of Aggregator’s 
Portfolio in the DB (separate 
option) 

The ATP-DB API will store 
the aggregator’s portfolio 
to the central DB 
 
The ATP-AFAT API will fetch 
the required data based on 
user’s inputs to AFAT 

 Select scenario of obligations due 
to FlexRequests-Reserve (drop-
down menu with default scenarios 
and scenarios saved by the user) 

 

 Option to modify reservation of 
flexibility 
- Remove reservation 
- Add reservation 
- Modify reservation 
 
Store scenario of reserve 
obligations in the DB (separate 
option) 

The ATP-DB API will store 
the scenario of flexibility 
reservation to the central 
DB 
 
The ATP-AFAT API will fetch 
the required data based on 
user’s inputs to AFAT 

Market data for the appropriate 
MTUs and location (€/MWh) 

Include market data for imbalance 
cost (checkbox) 24 
 

The ATP-DB API should 
fetch the appropriate 
market data (if possible) 
depending on the user’s 
input 

FlexRequest-Dispatch  
- Type of Energy 
- Amount of Energy 
- MTU 
- Price 
- Location  
etc. 

Manage FlexRequest click button 
to run the algorithm with the 
current settings The ATP-AFAT API will fetch 

the required data based on 
user’s inputs to AFAT  

Option to save current state to 
the DB 

Save option The ATP-DB API will store 
the appropriate data in the 
central DB. 

  
 

Output parameters Aggregator GUI in ATP Central FG database 

Response to FlexRequest 
(Accept/Reject) 

The response to the FlexRequest 
is shown. The rest of the outputs 
are shown only if the response to 
the FlexRequest is “Accept” 

The AFAT-ATP API will fetch 
the results from the AFAT to 
ATP. 
 

                                                 
24 If the user selects the checkbox, the appropriate data will be retrieved from the DB. The imbalance costs 
will be estimated on intraday market data (adjust scheduled curve) or balancing market (penalty)  
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Vector of dispatch decisions per 
FlexAsset for relevant MTUs 
 

A graph depicting the 
use/activation of each 
FlexAsset/end-user 
 

The ATP-DB API will store 
the same results to the 
central DB. 

Updated Table of FlexAssets Updated Table of FlexAssets 

Deviation of energy curve of 
FlexAssets cf. Baseline / Actual 
consumption 

A graph depicting the deviation of 
the real energy curve and the 
baseline one.  This should also be 
visualized per FlexAsset/end-user. 

Aggregator’s profit 
(revenue/cost) per MTU 

A graph depicting the profit, 
revenue and cost of aggregator 
for each MTU. 

 
According to the information above, a draft version of the Aggregator GUI sketches has been 
developed by ETRA as well as the first version of the AFAT-ATP-DB APIs. Indicative 
screenshots and more technical details can be found in D6.2.   
 

5.1.3 UML diagrams 

 
Figure 23: UML diagram for the ATP-AFAT API of UCS 4.1 (i.e. Aggregator user’s inputs filled in 

AFAT frontend and posted to AFAT backend) 
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Figure 24: UML diagram for the AFAT-ATP API of UCS 4.1 (i.e. algorithmic results produced by 

AFAT backend and visualized in AFAT frontend) 

 
The two figures above depict the UML diagrams for UCS 4.1. The first one is the data model 
representation of the input parameters described in the table above regarding the ATP-AFAT 
API. The second one is the data model representation of the output parameters described in 
the table above regarding the AFAT-ATP API.     
 

For a given timeframe (e.g. one or more timeslots ahead), the aggregator runs an automated 
flexibility aggregation algorithm to determine/create a FlexOffer that best represents the 
current status of its portfolio and submits it to the FLEXGRID ATP. This FlexOffer may be used 
either in the: i) TSO’s balancing market (cf. “no-DLFM” architecture), or ii) proposed DLFM 
market operated by the FMO to solve DN-level problems. 
 
Within WP6, the goal is to demonstrate that the aggregator user can visualize a FlexOffer and 
then submit (post) it in FLEXGRID ATP at a specific time instance regarding its participation in 
the DLFM market. Then, the FMO user will also be able to visualize this FlexOffer as well as 
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the DSO (i.e. FlexBuyer). If this FlexOffer is not accepted in DLFM, it may be forwarded to the 
TSO’s balancing market25. 
 

5.2.1 Proposed algorithm to integrate in AFAT 

Technical details about the mathematical model, algorithmic solution and performance 
evaluation results are provided in chapter 4 of D3.1 and chapter 3 of D3.2 (i.e. TRL 3).  
 

In this UCS, two modes of operation for the aggregator’s GUI are considered, namely:  

 Online operation is when the aggregator wants to create a FlexOffer in real-time 
(in order to submit it in the ATP) based on the current availability of FlexAssets (cf. 
FlexContract per FlexAsset that denotes the available reserve capacity). 

 Offline operation is when the aggregator wants to run “what-if” scenarios to see 
whether it is more beneficial to participate in the existing TN-level balancing market 
or DN-level balancing market (i.e. DLFM)26. 

 
In order to integrate the proposed mathematical model and algorithm at TRL 5, we have 
made the following assumptions: 

 Single-level optimization problem (i.e. aggregator is price-taker, not price-maker). 

 We do not take into account the underlying network model. We assume that all 
FlexOffers do not cause network/grid problems. 

 We do not take into consideration time coupling constraints, complex block offers, 
and other types of block offer constraints. 

 We assume that the aggregator gets paid for: i) the availability it offers to the 
TSO/DSO (€/MW), and ii) the energy that is activated at the delivery time (€/MWh).  

 
Regarding the input to the FlexOffer creation algorithm, every FlexAsset sends to the 
aggregator for each timeslot and each DN location id: i) one individual FlexOffer curve for up-
reserve (quantity vs. price), and ii) one individual FlexOffer for down-reserve (quantity vs. 
price). As of the output of the algorithm, the aggregator sends to FLEXGRID ATP for each 
timeslot and each DN location id: i) one aggregated FlexOffer curve for up-reserve (quantity 
vs. price), and ii) one aggregated FlexOffer for down-reserve (quantity vs. price). 
 

5.2.2 Algorithmic inputs and outputs and aggregator frontend ideas 

The following tables summarize the input parameters for the algorithm to run in the AFAT 
backend and output parameters for the results to be visualized in aggregator’s GUI (i.e. AFAT 
frontend) respectively.  
 

Input parameters Aggregator GUI in ATP Central FG database 

Portfolio id (e.g. 
number 1, 2, 3) 

Select aggregator’s portfolio (drop down 
menu with a few portfolios, e.g. BADENOVA 

The ATP-AFAT API will 
fetch the required data 

                                                 
25 ETRA will develop this API to emulate this operation. ETRA will also create a tab to demonstrate a “TSO user 
view” in which the TSO user can visualize this FlexOffer that has been forwarded (cf. UCS 1.4).  
26 UCS 2.3 deals with this problem in a similar way for the ESP user, so we can use the UCS 2.3 algorithm for the 
offline mode of operation, too. 
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data, Cyprus retailer’s data, Greek retailer’s 
data27) 

based on aggregator 
user’s inputs to AFAT. 
Then, the DB-AFAT API 
will fetch the required 
historical data from the 
central DB to the AFAT. 

Set of FlexAsset ids Select a set of FlexAssets from a list (i.e. scroll 
down and manually select the FlexAssets). 
Default option is to have a checkbox to select 
all FlexAssets for a given portfolio selected 
above. 

Start date time + end 
date time 

Select time interval ‘X’ date to ‘Y’ date (cf. 
calendar) 

Time granularity id Select from a drop-down menu (15-minute, 
1-hour, 1-day) 

Location id (DSO area) List of DSO areas for the user to select 
(default option is that the root/whole DSO 
area is selected, where the entire FlexAsset 
portfolio can be used)28 

Individual FlexOffer 
from each individual 
FlexAsset29  

- one FlexOffer curve for up-reserve 
(quantity vs. time)30  

- one FlexOffer for down-reserve 
(quantity vs. time)  

- location id 
No input is required by the aggregator user. 
We will have one static FlexOffer per 
FlexAsset stored in the central DB. 

Option to store data in 
the central FLEXGRID 
database 

Checkbox that can be either checked or not.  

Past scenario results to 
view in AFAT GUI (ATP) 

The aggregator user can select a past scenario 
to view it in the AFAT GUI. 

 

 
 

Output parameters Aggregator GUI in ATP Central FG database 

One FlexOffer curve per product 
(i.e. up-reserve and down-
reserve)  

A graph per product that depicts: 
- Quantity offered vs. time (at a 

given price) 
- Quantity offered vs. price (at a 

given timeslot) 
 
The FMO and DSO users should 
also be able to visualize these 
FlexOffer curves on their own 
GUIs. 

The AFAT-ATP API will fetch 
the results from the AFAT to 
ATP. 
 
The ATP-DB API may store 
the same results to the 
central DB. 

                                                 
27 We assume that each aggregator has already registered its own FlexAssets (i.e. portfolio) in the FLEXGRID 
ATP. ETRA will elaborate on the existing NODES API (https://nodes-
demo.azurewebsites.net/swagger/index.html#/).  
28 Following up the NODES paradigm, we can have an hierarchical structure. For example: i) id 1 for the entire 
DSO area (default area), ii)  id 1.1 or 1.2 or id 1.3 for a DSO sub-area, iii) id 1.1.1 for a specific LV-feeder 
experiencing network problems at a distribution network edge.   
29  If we want to make it more complex (assume more complex FlexContract), we may assume that each 
individual FlexAsset sends for each timeslot several quantity vs. price (tuples). 
30 For example, if the aggregator user selects a time interval of one day (cf. day-ahead) and 1-hour time 
granularity, the individual FlexOffer will be a vector of 24-hourly quantities offered vs. time (for a given price).  

https://nodes-demo.azurewebsites.net/swagger/index.html#/
https://nodes-demo.azurewebsites.net/swagger/index.html#/
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Potential revenues (€) for the 
selected scenario (if FlexOffer is 
accepted) 

A graph per selected market (TN- 
or DN-level reserve market) that 
depicts: 
- Expected revenues (€) vs. time 
 
Only the aggregator user can 
visualize these results. 

The AFAT-ATP API will fetch 
the results from the AFAT to 
ATP. 
 
The ATP-DB API may store 
the same results to the 
central DB. 

 

5.2.3 UML diagrams 

The following two figures depict the UML diagram for UCS 4.3. The first one is the data model 
representation of the input parameters described in the table above regarding the ATP-AFAT 
API. The second one is the data model representation of the output parameters described in 
the table above regarding the AFAT-ATP API.   
   

 
Figure 25: UML diagram for the ATP-AFAT API of UCS 4.3 (i.e. Aggregator user’s inputs filled in 

AFAT frontend and posted to AFAT backend) 

 

 
Figure 26: UML diagram for the AFAT-ATP API of UCS 4.3 (i.e. algorithmic results produced by 

AFAT backend and visualized in AFAT frontend) 
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In this UCS, we assume that a DSO has made a FlexRequest (i.e. quantity vs. price curve for 
each given timeslot). The aggregator user wants to run various “what-if” simulation 
scenarios (i.e. offline operation) to determine better ways (via retail pricing schemes) to 
operate a novel B2C flexibility market, in which the end energy prosumers compete with 
each other. In other words, the aggregator runs a retail pricing algorithm to test and 
evaluate the impact that new FlexContracts (with its end users) would have on several KPIs 
such as:  

 aggregator’s revenues,  

 aggregated end users’ welfare,  

 quantity of flexibility offered to the system,  

 individual end user’s welfare. 

 

5.3.1 Proposed algorithm to integrate in AFAT 

Technical details about the mathematical model, algorithmic solution and performance 
evaluation results are provided in chapter 5 of D3.1 and chapter 4 of D3.2 (i.e. TRL 3).  
 

In this UCS, only one operation mode for the aggregator’s GUI is considered, namely:  

 Offline operation: The aggregator user runs various “what-if” simulation scenarios 
via running an advanced retail pricing algorithm (Behavioral Real Time Pricing – B-
RTP) to identify how it can recommend a new (more beneficial) FlexContract to a 
set of end energy prosumers. Only the aggregator user will be able to visualize the 
results. 

 
In order to integrate the proposed mathematical model and algorithm at TRL 5, we have 
made the following assumptions: 

 We assume that the end energy prosumers dispose the required ICT infrastructure 
and equipment to automatically create individual FlexOffers and respond to the 
iterative pricing signals sent by the aggregator. 

 We assume that the aggregator has already registered all its individual FlexAssets in 
the ATP (like it is done in the NODES platform) with all the required FlexAsset 
specifications. 

 We do not take into account the underlying network model. We assume that all 
FlexOffers do not cause any network/grid problems, which is a rational assumption 
given the fact that a DSO has already made a FlexRequest and this is an input to our 
algorithm. 

 We follow a decentralized optimization approach (in contrary with the UCS 4.1, in 
which a centralized optimization is adopted). 

 We assume historical energy consumption and production data. So, we run 
exhaustive offline simulation scenarios to identify potential energy prosumers, who 
are eager to become more flexible (i.e. select a more beneficial FlexContract) in order 
to earn more financial rewards in the future. 

 We assume that the DSO has made the FlexRequest based on existing 
load/generation forecast data that it already acquires for its distribution network. 
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5.3.2 Algorithmic inputs and outputs and aggregator frontend ideas 

The following tables summarize the input parameters for the algorithm to run in the AFAT 
backend and output parameters for the results to be visualized in aggregator’s GUI (i.e. AFAT 
frontend) respectively.  
 

Input parameters Aggregator GUI in ATP Central FG database 

Portfolio id (e.g. number 1, 2, 3) Select aggregator’s portfolio (drop 
down menu with a few portfolios, 
e.g. BADENOVA data, Cyprus 
retailer’s data, Greek retailer’s 
data)31 

The ATP-AFAT API will fetch 
the required data based on 
aggregator user’s inputs to 
AFAT backend (i.e. 
algorithm). The DB-AFAT 
API will fetch the required 
historical data from the 
central DB to the AFAT 
backend (i.e. algorithm). 

Set of prosumer ids Select a set of end energy 
prosumers from a list (i.e. scroll 
down and manually select the end 
prosumers)32 

Start date time + end date time Select time interval ‘X’ date to ‘Y’ 
date (cf. calendar) 

Time granularity id Select from a drop-down menu: 
15-minute, 1-hour, 1-day 

Timeframe id Select from a drop-down menu: 
(default, Mon-Fri ONLY, Weekend 
ONLY, night hours ONLY, Peak 
hours ONLY) 

FlexRequest: a vector of 
price/quantity tuples for each 
15-min timeslot  

Select a FlexRequest from a drop-
down menu 33  or retrieve the 
FlexRequest that is manually 
created by the DSO user in ATP34 

FlexOffer: a vector of 
price/quantity tuples for each 1-
hour timeslot per FlexAsset 

No input is required by the 
aggregator user. We will have one 
static Flexoffer per end user 
stored in the central DB35 

Storage unit specifications (fill 
in parameters in the GUI) 

Fill in (for every storage unit – the 
user can add several units):  

- power capacity (KW) 
- energy capacity (KWh) 
- inefficiency rate (%) 
- initial/final SoC (%) 
- location id 

Curtailable load specifications 
(fill in parameters in the GUI) 

Fill in (for every load unit – the 
user can add several units):  

- power consumption (KW) 

                                                 
31 15-minute granularity of energy consumption and RES data is available 
32 All energy consumption and production datasets are stored in the central DB. 
33 There is a set of indicative FlexRequests, which are stored in the central FG database. 
34 Once the DSO user creates a FlexRequest in the respective DSO GUI (cf. UCS 1.1-1.3), then this FlexRequest is 
automatically posted in the aggregator/ESP user’s GUI. 
35 We do not need to have a sketch for this in the GUI. Once the aggregator user selects the set of prosumer ids 
(see above), then the algorithm will retrieve the static FlexOffers (one per end user) from the central DB. This 
static FlexOffer is a mathematical interpretation of each end user’s FlexContract. 
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FlexContract id Select manually 1 or more retail 
pricing algorithms from a drop-
down menu to be compared:   

- Fixed pricing,  
- Real-Time Pricing (γ=0),  
- Behavioral RTP (γ=1), 
- Behavioral RTP (γ=0.5), 
- Behavioral RTP (γ=1.5)  

Gamma ‘γ’ parameter? Fill in a number in a required field. 
This ‘γ’ value can be 0<γ<2.36 

Profit margin parameter ‘p’ 
(optional) 

Fill in a number in a required 
field37 

 

Option to store data in the 
central FLEXGRID database 

Checkbox that can be either 
checked or not. 

The ATP-DB will store the 
algorithmic results in the 
central DB. 

Scenario results to view in AFAT 
GUI (ATP) 
 

The aggregator user can select a 
past scenario to view it in the 
AFAT GUI. 

The DB-ATP will retrieve the 
data from the central DB.  

 
 

Output parameters Aggregator GUI in ATP Central FG database 

Flexibility revenues  A graph per selected pricing 
scheme that depicts: 
- flexibility revenues vs. ‘γ’? 

The AFAT-ATP API will fetch 
the results from the AFAT to 
ATP. 
 
The ATP-DB API will store 
the same results to the 
central DB (if the related 
checkbox has been 
checked). 

Aggregated end Users’ Welfare 
(AUW)  

A graph per selected pricing 
scheme that depicts: 
- aggregated users’ welfare vs. 

‘γ’? 

Quantity of aggregated flexibility 
offered 

A graph per selected pricing 
scheme that depicts: 
- quantity of flexibility offered 

vs. ‘γ’? 
 

Welfare per end user (optional) A histogram per selected pricing 
scheme that depicts: 
- ‘X’ axis: set of selected end 

users 
- ‘Y’ axis: UW with B-RTP (γ)/ 

UW with RTP (γ=0) 

 
 

                                                 
36 When γ=0, we have the RTP model in which all end users get the same reward in €/flexibility unit, even though 
some of the them did not contribute anything in the FlexRequest. When γ=1, we have a fully personalized RTP 
scheme, in which the flexible end users get rewarded according to each one’s contribution, while inflexible end 
users do not get any reward. When γ>1, then the inflexible end users get penalized, because they did not 
contribute anything in a case of a critical FlexRequest.  
37 This parameter can be any number between 0 and 1 and represents the percentage of flexibility revenues 
that will get the aggregator as profit. The residual percentage of aggregator’s revenues will be shared among 
end users. In the extreme case, in which p=0, all flexibility revenues are shared among the end users. 
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5.2.3 UML diagrams 

The following two figures depict the UML diagram for UCS 4.2. The first one is the data model 
representation of the input parameters described in the table above regarding the ATP-AFAT 
API. The second one is the data model representation of the output parameters described in 
the table above regarding the AFAT-ATP API.     
 

 
Figure 27: UML diagram for the ATP-AFAT API of UCS 4.2 (i.e. Aggregator user’s inputs filled in 

AFAT frontend and posted to AFAT backend) 

 

 
Figure 28: UML diagram for the AFAT-ATP API of UCS 4.2 (i.e. algorithmic results produced by 

AFAT backend and visualized in AFAT frontend) 
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As already discussed, we will integrate three UCS in the Automated Flexibility Aggregation 
Toolkit (AFAT). The S/W architecture follows a modular-by-design approach, which allows 
the different S/W modules to be developed on a standalone basis by the two involved 
partners (i.e. UCY, ICCS) and communicate with each other via well-defined and fine-grained 
APIs. The following figure describes in five main steps the process that will be followed38. 
There are three main S/W components that will be developed, namely: 

 ATP GUI or else AFAT frontend: this will be developed by ETRA. 

 AFAT backend: this will be developed collaboratively by UCY (cf. UCS 4.1) and ICCS 
(cf. UCS 4.2 and 4.3). 

 FLEXGRID Central Database: this will be developed by ETRA, while real-life input data 
will be provided by each one of the two research partners in collaboration with 
industrial partners, too. 

 
First of all, the aggregator user will login the FLEXGRID ATP, will be authenticated through a 
single sign-on process and then will be redirected to the main aggregator’s GUI. Via the AFAT 
application, the aggregator user will be able to visualize, configure and manage its end user 
portfolio. Moreover, the aggregator user will be able to run three main algorithms in order 
to be able to make optimally manage a FlexRequest (cf. UCS 4.1), create a FlexOffer (cf. UCS 
4.2) and manage a novel B2C flexibility market (cf. UCS 4.3).  
 
For each one of the three algorithms, there will be a tab in the AFAT frontend. Once the 
aggregator user clicks on one tab, s/he will be able to configure/customize/fill in the input 
parameters that are needed for each algorithm to be able to run. Once the aggregator user 
clicks on the “Run algorithm” button, step 1 process will be followed. More specifically, the 
API client that resides at the AFAT frontend will automatically gather all input parameters 
and will send them to the API server that resides at the AFAT backend. 
 
After the AFAT backend receives the input parameters, the next step is to request for the 
required input data from the FLEXGRID central database (DB). More specifically, an API client 
that resides at AFAT backend request for input data from an API server residing at the central 
DB. In step 3, the input data is retrieved, and now the algorithm can be executed.  
 
Once the algorithm produces the results, these output parameters will be automatically 
gathered by the AFAT-ATP API and will be sent to the AFAT frontend so that the aggregator 
user can visualize the results in a comprehensive and user-friendly manner. The final step 
(i.e. step 5) is for the aggregator user to understand the results and if s/he is interested in 
further elaborating them, then s/he can optionally select to store them in the central DB in 
order to be able to retrieve, visualize and possibly compare them with other results in the 
future.      

 

                                                 
38 More technical details about the steps depicted in Figure 29 are provided in FLEXGRID D6.2. 
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Figure 29: Sequence diagram for communication among ATP frontend, AFAT backend and central 

database 
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6 Conclusions and next steps 
Conclusively, during the next months, FLEXGRID consortium will elaborate on the data 
modeling work presented in this deliverable towards delevering the 1st version of FLEXGRID 
ATP in Month 24, which corresponds to project’s milestone #8 “Release of the first integrated 
FLEXGRID system prototype”.  
 
During the Period 1 review meeting, which will take place on 22nd June 2021, the FLEXGRID 
consortium will demonstrate the first algorithm that is integrated in FLEXGRID ATP. In other 
words, the ESP user will be able to fill in all simulation parameters, execute the algorithm and 
after the algorithm’s run, the results will be automatically shown in the FLEXGRID ATP. For 
this purpose, the first REST API server and REST API client will be developed and the 
communication with the central FLEXGRID database will be demonstrated, too. After M21, a 
similar S/W integration process will be followed for all UCS and thus algorithms. Once a new 
algorithm has been exhaustively tested and validated at TRL 3 by a research partner in the 
context of WP3, WP4 and WP5, the next step will be the S/W integration phase, which is 
ETRA’s main responsibility. Two rounds of S/W implementation and integration will take 
place in order to timely identify any possible technical problems and apply pre-agreed 
contingency measures.  
 
As also depicted in the figure below, the delivery of “alpha” version of FLEXGRID ATP is 
scheduled for M24, while the “beta” version is expected to take place in M33.  
 

 
Figure 30: Current FLEXGRID project’s timeline schedule (MS 6 has been accomplished) 
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