
0

H2020-GA-863876

Data Model of FLEXGRID architecture

Deliverable D6.1

A novel smart grid architecture that

facilitates high RES penetration through

innovative markets towards efficient

interaction between advanced electricity

grid management and intelligent

stakeholders

1

Document Information
Scheduled delivery 31.03.2021
Actual delivery 24.03.2021
Version Final
Responsible Partner ICCS

Dissemination Level
PU Public

Contributors
Prodromos Makris (ICCS), Dimitrios Vergados (ICCS), Konstantinos Steriotis (ICCS), Nikolaos
Efthymiopoulos (ICCS), German Martinez (ETRA), Elena Leal Lorente (ETRA), Maria-Iro Baka
(UCY), Christina Papadimitriou (UCY), Marios Kynigos (UCY), Stylianos Loizidis (UCY), Andreas
Kyprianou (UCY), George Georghiou (UCY), Domagoj Badanjak (UNIZG-FER), Hrvoje Pandzic
(UNIZG-FER), Lars Finn Herre (DTU), Elea Marie Prat (DTU), Spyros Chatzivasileiadis (DTU),
Robert Gerhcke (NPC), Matin Bagherpour (NPC), Gesa Milzer (NODES), Tonci Tadin (HOPS),
Malte Thoma (bnNETZE)

Internal Reviewers
Elena Leal (ETRA), German Martinez (ETRA), Emmanouel Varvarigos (ICCS)

Copyright
This report is © by ICCS and other members of the FLEXGRID Consortium 2019-2022. Its
duplication is allowed only in the integral form for anyone’s personal use and for the
purposes of research or education.

Acknowledgements
The research leading to these results has received funding from the EC Framework
Programme HORIZON2020/2014-2020 under grant agreement n° 863876.

2

Glossary of Acronyms

Project management terminology

Acronym Definition

D Deliverable

HLUC High Level Use Case

MS Milestone

TRL Technology Readiness Level

UCS Use Case Scenario

WP Work Package

Technical terminology

Acronym Definition

AC-OPF Alternating Current Optimal Power Flow

AFAT Automated Flexibility Aggregation Toolkit

API Application Programming Interface

ATP Automated Trading Platform

B2B/B2C Business to Business / Business to Consumer

BM Balancing Market

BRNN Bayesian Regularized Neural Network

BRP Balance Responsible Party

B-RTP Behavioral Real Time Pricing

BSU Battery Storage Unit

CAPEX Capital Expenditures

DAD Day Ahead Dispatch

DA-EM Day Ahead Energy Market

DA-RM Day Ahead Reserve Market

DB Data Base

DC-OPF Direct Current Optimal Power Flow

DER Distributed Energy Resource

DFA Distributed Flexibility Asset

DLEM Distribution Level Energy Market

DLFM Distribution Level Flexibility Market

DR Demand Response

DSM Demand Side Management

DSO/TSO Distribution/Transmission System Operator

ELM Extreme Learning Machine

ESP Energy Service Provider

FMCT Flexibility Market Clearing Toolkit

FMO Flexibility Market Operator

FSP Flexibility Service Provider

FST FlexSupplier’s Toolkit

GUI Graphical User Interface

ICT Information and Communication Technology

3

I-DLFM Interactive Distribution Level Flexibility Market

KPI Key Performance Indicator

LMP Locational Marginal Price

MO Market Operator

MTU Market Time Unit

NWP Numerical Weather Prediction

OPEX Operational Expenditures

OPF Optimal Power Flow

PCC Point of Common Coupling

P-DLFM Proactive Distribution Level Flexibility Market

RPC RES Production Curve

R-DLFM Reactive Distribution Level Flexibility Market

RES Renewable Energy Sources

SLFN Single Layer Feed Forward Network

SoC State of Charge

SOCP Second Order Cone Programming

S/W Software

TER Transmission level Energy Resource

VPP Virtual Power Plant

4

Table of Contents
Table of Contents .. 4
List of Figures and Tables .. 6

List of Figures .. 6
List of Tables ... 7

Document History ... 8
Executive Summary ... 9
1 Introduction .. 11

1.1 Purpose of the document ... 11
1.2 Scope of the document ... 11
1.3 Research and S/W implementation methodology ... 13

2 FLEXGRID x-DLFM architectures .. 15
2.1 No-DLFM architecture - benchmark ... 15
2.2 Reactive DLFM (R-DLFM) architecture.. 17
2.3 Proactive DLFM architecture .. 19
2.4 Interactive DLFM architecture .. 20

3 Data model for the FMO and DSO user’s frontend and FMCT backend 22
3.1 UCS 1.1 – DLFM clearing for the active power (energy) product 22
3.1.1 Proposed algorithm to integrate in FMCT ... 22
3.1.2 Algorithmic inputs and outputs and FMO/DSO frontend ideas 23
3.1.3 UML diagrams .. 25

3.2 UCS 1.2 – DLFM clearing for the active power reserve (up/down) product 26
3.2.1 Proposed algorithm to integrate in FMCT ... 26
3.2.2 Algorithmic inputs and outputs and FMO/DSO frontend ideas 27
3.2.3 UML diagrams .. 29

3.3 UCS 1.3 – DLFM clearing for the reactive power reserve (up/down) product 29
3.3.1 Proposed algorithm to integrate in FMCT ... 30
3.3.2 Algorithmic inputs and outputs and FMO/DSO frontend ideas 31
3.3.3 UML diagrams .. 33

3.4 Sequence diagram for communication between ATP frontend and FMCT
backend ... 33

4 Data model for the ESP user’s frontend and FST backend .. 35
4.1 UCS 2.1 – Minimize ESP’s Operational Expenditures (OPEX) 35
4.1.1 Proposed algorithm to integrate in FST ... 35
4.1.2 Algorithmic inputs and outputs and ESP frontend ideas 36
4.1.3 UML diagrams for UCS 2.1 ... 37

4.2 UCS 2.2 – Minimize ESP’s Capital Expenditures (CAPEX) .. 39
4.2.1 Proposed algorithm to integrate in FST ... 40
4.2.2 Algorithmic inputs and outputs and ESP frontend ideas 40
4.2.3 UML diagrams for UCS 2.2 ... 42

4.3 UCS 2.3 – Maximize ESP’s stacked revenues .. 44
4.3.1 Proposed algorithm to integrate in FST ... 44
4.3.2 Algorithmic inputs and outputs and ESP frontend ideas 45
4.3.3 UML diagrams for UCS 2.3 ... 47

4.4 UCS 4.4 – PV and Market price forecasting .. 49

5

4.4.1 PV generation forecasting .. 49
4.4.2 Market price forecasting .. 50
4.4.3 UML diagrams for UCS 4.4 ... 52

4.5 Sequence diagram for communication between ATP frontend and FST backend . 53
5 Data model for the aggregator user’s frontend and AFAT backend 55

5.1 UCS 4.1 – Manage a FlexRequest .. 55
5.1.1 Proposed algorithm to integrate in AFAT .. 55
5.1.2 Algorithmic inputs and outputs and aggregator frontend ideas 56
5.1.3 UML diagrams .. 58

5.2 UCS 4.3 – Create a FlexOffer ... 59
5.2.1 Proposed algorithm to integrate in AFAT .. 60
5.2.2 Algorithmic inputs and outputs and aggregator frontend ideas 60
5.2.3 UML diagrams .. 62

5.3 UCS 4.2 – Manage a novel B2C flexibility market ... 63
5.3.1 Proposed algorithm to integrate in AFAT .. 63
5.3.2 Algorithmic inputs and outputs and aggregator frontend ideas 64
5.2.3 UML diagrams .. 66

5.4 Sequence diagram for communication among ATP frontend and AFAT backend . 67
6 Conclusions and next steps .. 69

6

List of Figures and Tables

Figure 1: Placement of data modeling work within FLEXGRID project’s context 12
Figure 2: Data modelling methodology .. 14
Figure 3: No-DLFM architecture representing the today’s EU regulatory framework 16
Figure 4: Reactive DLFM architecture (DLFM follows DA-EM and DA-RM) 17
Figure 5: Proactive DLFM (DLFM precedes DA-EM and DA-RM) .. 19
Figure 6: Interactive DLEM (iterative message exchanges between MO and FMO until
convergence) ... 20
Figure 7: Interactive DLFM (iterative message exchanges between TSO and DSO until
convergence) ... 21
Figure 8: UML diagram for the ATP-FMCT API of UCS 1.1, UCS 1.2 and UCS 1.3 (i.e. FMO user’s
inputs filled in FMCT frontend and posted to FMCT backend) .. 25
Figure 9: UML diagram for the ATP-FMCT API of UCS 1.1, UCS 1.2 and UCS 1.3 (i.e. algorithmic
results produced by FMCT backend and visualized in FMCT frontend) 26
Figure 10: Sequence diagram for communication among ATP frontend, FMCT backend and
central FLEXGRID database ... 34
Figure 11: UML diagram for the ATP-FST API of UCS 2.1 (i.e. ESP user’s inputs filled in FST
frontend and posted to FST backend) .. 38
Figure 12: UML diagram for the ATP- FST API of UCS 2.1 (i.e. algorithmic results produced by
FST backend and visualized in FST frontend) .. 39
Figure 13: UML diagram for the ATP-FST API of UCS 2.2 (i.e. ESP user’s inputs filled in FST
frontend and posted to FST backend) .. 43
Figure 14: UML diagram for the ATP- FST API of UCS 2.2 (i.e. algorithmic results produced by
FST backend and visualized in FST frontend) .. 43
Figure 15: Example of swagger file for UCS 2.3 API data model .. 47
Figure 16: UML diagram for the ATP-FST API of UCS 2.3 (i.e. ESP user’s inputs filled in FST
frontend and posted to FST backend) .. 48
Figure 17: UML diagram for the FST-ATP API of UCS 2.3 (i.e. algorithmic results produced by
FST backend and visualized in FST frontend) .. 48
Figure 18: UML diagram for the ATP-FST API of UCS 4.4 for PV generation forecast (i.e. ESP
user’s inputs filled in FST frontend and posted to FST backend) ... 52
Figure 19: UML diagram for the FST-ATP API of UCS 4.4 for PV generation forecast (i.e.
algorithmic results produced by FST backend and visualized in FST frontend) 53
Figure 20: UML diagram for the ATP-FST API of UCS 4.4 for market price forecasting (i.e. ESP
user’s inputs filled in FST frontend and posted to FST backend) ... 53
Figure 21: UML diagram for the FST-ATP API of UCS 4.4 for market price forecasting (i.e.
algorithmic results produced by FST backend and visualized in FST frontend) 53
Figure 22: Sequence diagram for communication among ATP frontend, FST backend and
central database ... 54
Figure 23: UML diagram for the ATP-AFAT API of UCS 4.1 (i.e. Aggregator user’s inputs filled
in AFAT frontend and posted to AFAT backend) .. 58
Figure 24: UML diagram for the AFAT-ATP API of UCS 4.1 (i.e. algorithmic results produced by
AFAT backend and visualized in AFAT frontend) .. 59

7

Figure 25: UML diagram for the ATP-AFAT API of UCS 4.3 (i.e. Aggregator user’s inputs filled
in AFAT frontend and posted to AFAT backend) .. 62
Figure 26: UML diagram for the AFAT-ATP API of UCS 4.3 (i.e. algorithmic results produced by
AFAT backend and visualized in AFAT frontend) .. 62
Figure 27: UML diagram for the ATP-AFAT API of UCS 4.2 (i.e. Aggregator user’s inputs filled
in AFAT frontend and posted to AFAT backend) .. 66
Figure 28: UML diagram for the AFAT-ATP API of UCS 4.2 (i.e. algorithmic results produced by
AFAT backend and visualized in AFAT frontend) .. 66
Figure 29: Sequence diagram for communication among ATP frontend, AFAT backend and
central database ... 68
Figure 30: Current FLEXGRID project’s timeline schedule (MS 6 has been accomplished) ... 69

Table 1: Document History Summary ... 8

8

Document History
This deliverable includes the research output of task 6.1. It includes a detailed data model for
the S/W development of FLEXGRID S/W platform. High-level description of the interaction
with existing S/W platforms is also provided.

Table 1: Document History Summary

Revision Date File version Summary of Changes

30/11/2020 v0.1 Draft ToC circulated within all consortium partners

07/01/2021 v0.2 All partners commented on the draft ToC structure.

13/01/2021 v0.3 Final ToC version has been agreed and writing task delegations
have been provided to all involved partners.

26/02/2021 v0.4 All partners contributed their 1st round inputs and first draft
version has been reviewed by ETRA.

03/03/2021 v0.8 ICCS integrates text, addressed comments from all research
partners and produced the pre-final version for internal review.

17/03/2021 v0.9 ETRA reviewed the pre-final version and provided comments
for changes/enhancements.

22/03/2021 v0.95 ICCS addressed all comments from the internal review process
and forwarded the final version to the coordinator.

24/03/2021 v1.0 Coordinator (ICCS) made final enhancements/changes and
submitted to ECAS portal

9

Executive Summary
This report is an official deliverable of H2020-GA-863876 FLEXGRID project dealing with all
the data modelling work of FLEXGRID’s S/W architecture. It includes the research output of
task 6.1 and thus a detailed data model, which is a pre-requisite for the development of
FLEXGRID S/W platform.

D6.1 elaborates on almost all previous FLEXGRID deliverables1 as follows:

 D2.1: For all High Level Use Cases (HLUC) and Use Case Scenarios (UCS) that have been
defined in D2.1, this report specifies the exact data model that will be used in order
to fulfill the system-level and user requirements that have been analyzed in the first
months of the project.

 D2.2: The FLEXGRID data model has been developed following up all the major
architectural decisions that have been made and have been documented in D2.2.
More specifically, this report elaborates on the draft data model for AFAT, FST and
FMCT algorithms that has already been described in a quite abstract way in chapter 7
of D2.2.

 D3.1: Based on chapter 6 of D3.1 and the description of the WP3 mathematical
models and algorithms, this report provides the final data model for the interaction
between the AFAT’s frontend (i.e. ATP GUI) and backend services.

 D4.1: Based on chapter 8 of D4.1 and the description of the WP4 mathematical
models and algorithms, this report provides the final data model for the interaction
between the FST’s frontend and backend services.

 D5.1: Based on chapter 5 of D5.1 and the description of the WP5 mathematical
models and algorithms, this report provides the final data model for the interaction
between the FMCT’s frontend and backend services.

 D8.1: The final data model that is presented in this report has been developed in a
way that is totally in line with the initial market analysis, business modeling and the
long list of value propositions presented in chapters 1 and 2 of D8.1.

Chapter 1 of this report describes the main steps of the S/W implementation methodology
that has been followed by the entire consortium as well as the interactions with the research
methodology that has been adopted at the early stages of the project. FLEXGRID S/W
architecture is modular-by-design providing thus flexibility and means for efficient
collaborative work and exploitation after the end of project’s lifetime. A subset of the most
important UCS have been selected to be integrated in the FLEXGRID ATP (TRL 5), while the
residual ones are expected to be developed until TRL 3 within WP3, WP4 and WP5 and
respective high-quality scientific papers are expected to be published in prestigious scientific
journals and conferences. Moreover, a subset of the most important functionalities per
selected UCS have been chosen to be integrated in FLEXGRID ATP, because the focus of
WP6 work is not on scientific excellence (like in WP3, WP4 and WP5), but on the potential
impact, meaning the demonstration of proof-of-concept results in a real-life S/W platform,
which can be used directly by all interested market stakeholders and will also boost the
FLEXGRID’s communication, dissemination and exploitation activities.

1 https://flexgrid-project.eu/deliverables.html

https://flexgrid-project.eu/deliverables.html

10

Chapter 2 presents detailed sequence diagrams for the proposed x-DLFM architectures,
which are actually holistic energy market architectures that integrate the novel concept of
“Distribution Level Flexibility Market - DLFM”. The goal of these sequence diagrams is to
depict all existing markets and how these may interact with the proposed DLFM and also how
the different sequence of markets affects the performance of certain KPIs. In each sequence
diagram, various building blocks are illustrated, which represent the advanced
mathematical models and algorithms that have been developed within WP3, WP4 and WP5
and will be integrated in FLEXGRID ATP (WP6). Moreover, exchange of information is
illustrated between the various building blocks and thus among the various market
stakeholders. For each one of these arrows and building blocks, detailed data models are
provided in chapters 3-5.

In Chapter 3, we present the detailed data model for the FMO and DSO users based on the
WP5 research work. All algorithmic inputs and outputs are described for UCS 1.1, 1.2 and
1.3 together with UML and sequence diagrams. Based on this data modelling work provided
by DTU, ETRA will implement the FMCT frontend and respective APIs for the communication
between the FLEXGRID ATP, the central database and the FMCT backend (i.e. algorithms).

Chapter 4 presents the detailed data model for the ESP user based on the WP4 research
work. All algorithmic inputs and outputs are described for UCS 2.1, 2.2, 2.3 and 4.4 together
with UML and sequence diagrams. Based on this data modelling work provided by UNIZG,
ICCS and UCY, ETRA will implement the FST frontend and respective APIs for the
communication between the FLEXGRID ATP, the central database and the FST backend.

Chapter 5 presents the detailed data model for the aggregator user based on the WP3
research work. All algorithmic inputs and outputs are described for UCS 4.1, 4.2 and 4.3
together with UML and sequence diagrams. Based on this data modelling work provided by
UCY and ICCS, ETRA will implement the AFAT frontend and respective APIs for the
communication between the FLEXGRID ATP, the central database and the AFAT backend.

Conclusively, in the following months, FLEXGRID consortium will elaborate on the data
modeling work to deploy the FMCT/FST/AFAT frontends in FLEXGRID ATP as well as the
Application Programming Interfaces (APIs) for the integration of the respective backend
intelligence into the FLEXGRID ATP. Finally, the central database will be developed,
populated with real-life historical data together with the APIs for the information exchange
between the database and FLEXGRID ATP frontend and backend modules. Finally, it should
be noted that although the data modeling work has finished in M18, an iterative S/W
development process will be followed and thus the final data model may be slightly different
from the one reported in this deliverable. Therefore, the final FLEXGRID data model will be
delivered at the end of the project’s lifetime via D6.3.

11

1 Introduction

This report aims at defining the detailed data model of FLEXGRID architecture. With the term
“data model”, we mean the exact information exchange and communication protocols
based on which the various market stakeholders interact with each other via the proposed
FLEXGRID Automated Trading Platform (ATP). We also mean the algorithmic inputs and
outputs of all FLEXGRID processes, which aims at optimizing the benefits/interests of each
market stakeholder or the system as a whole.

We have made a clear categorization of the various FLEXGRID data models throughout the
report. One major categorization is between the proposed x-DLFM architectures. We
propose three architectures, namely: i) Reactive DLFM (R-DLFM), ii) Proactive DLFM (P-
DLFM), and iii) Interactive DLFM (I-DLFM). We also assume the “No-DLFM” architecture as a
benchmark in the sense that no DLFM exists in today’s EU energy markets. R-DLFM takes
place after day-ahead energy (DA-EM) and day-ahead reserve markets (DA-RM) operated by
the Market Operator (MO) and Transmission System Operator (TSO) respectively. P-DLFM
takes place before the aforementioned existing markets in order to deal proactively with
possible distribution-level congestion management and voltage control problems. Finally, I-
DLFM assumes an iterative information exchange process between the MO and FMO (i.e.
energy markets) and the TSO and DSO (i.e. reserve and balancing markets).

Another major categorization is between the FMO, DSO, ESP and aggregator users. In
particular, we provide a detailed data model for each one of the aforementioned market
stakeholders. For the FMO and DSO users, there is a data model for the FMCT frontend (i.e.
what the FMO/DSO users can fill in in their GUIs in order to perform their market and
business logic operations) and the FMCT backend (i.e. what the FMO/DSO users can visualize
as algorithmic results in order to make further managerial actions). Following the same
rationale, there is a data model for the ESP user and the aggregator user (cf. chapters 4 and
5 respectively).

This document presents the results of the FLEXGRID’s data modelling work in the context of
Task 6.1, which took place between M13 and M18. As shown in the figure below, task 6.1
work has been based on previous work and respective deliverables that took place within the
first twelve months of the project’s lifetime as follows:

 D6.1 elaborates on the high-level specifications and draft data modeling work that
took place within WP2 as well as the business cases that have also been defined at
the early stages of the project.

 Detailed data models are also defined for all the mathematical models and
algorithmic solutions that have been defined in the first phase of research work within
WP3, WP4 and WP5. In other words, all research partners (i.e. ICCS, UCY, DTU, UNIZG-
FER) have identified the most important UCS functionalities that will be integrated in
the FLEXGRID ATP and collaborated closely with ETRA in order to design all the GUIs

12

(i.e. ATP frontend services) as well as the APIs for the exchange of data with ATP
backend services.

 Finally, data modeling work was based on the FLEXGRID’s data management plan
(DMP), which includes all types of real-life and historical datasets that will be available
by FLEXGRID’s industrial partners (i.e. NODES, NPC, BNNETZE, HOPS, SIN) in order to
test and validate the proposed mathematical models and algorithms. Moreover,
based on the industrial partners’ expertise, an initial market analysis and business
modeling work took place that gave important feedback to the research partners
towards defining the final version of the data models.

Figure 1: Placement of data modeling work within FLEXGRID project’s context

After the end of Task 6.1 and delivery of D6.1 in M18, a set of specific activities will take place
in order to elaborate on data modeling work’s results as follows:

 As all data models will be translated in json format and respective swagger2 files will
be ready for use, the deployment of all APIs and GUIs will start in M19.

 Another major task will be the integration of all selected algorithms in the FLEXGRID
ATP as well as the testing and validation activities that will take place during the
Period 2.

 Based on the data modeling work presented in chapter 2 of this report, various
holistic FLEXGRID energy market architectures will be developed and compared
within the lab testing work of WP7.

 Finally, as all data models are organized in swagger files and are also available in
FLEXGRID GitHub area 3 , the consortium’s communication activities will be more
targeted and efficient towards identifying interesting real-life business cases in EU
area with targeted customer segments according to the ongoing FLEXGRID’s business
modeling work, too.

2 Swagger is a set of open source software tools for designing, building, documenting and using RESTful web
services - https://swagger.io/
3 https://github.com/FlexGrid

https://swagger.io/
https://github.com/FlexGrid

13

FLEXGRID research partners have already defined a clear research methodology plan in Task
2.1. ETRA has also made a clear S/W implementation plan in Task 2.4, which is based on a
modular-by-design approach. In the figure below, the data modelling methodology is
illustrated. Five main steps were followed by all research partners in close collaboration with
ETRA, which is responsible for the S/W integration and FLEXGRID ATP frontend services (i.e.
GUIs). These five steps were followed for each individual UCS and thus proposed
mathematical model and algorithm solution as follows:

 Step 1: For every UCS that has been short-listed to be integrated in FLEXGRID ATP,
the algorithmic solution is clarified in order to fit the business needs of a real-life
market stakeholder (i.e. FMO, DSO, ESP, aggregator) that will utilize the FLEXGRID
ATP. This means that some assumptions need to be made in order to transform the
rather complex mathematical formulations of the research WPs (i.e. WP3, WP4 and
WP5) into more realistic and closer to business- and regulation-related constraints.

 Step 2: The algorithmic inputs are defined in great detail after consultation with
industrial partners. Moreover, ETRA collaborated closely with research partners in
order to design the FLEXGRID ATP frontend (GUI) services in a user-friendly manner.

 Step 3: The algorithmic outputs (i.e. results) are defined in great detail after
consultation with industrial partners. Moreover, ETRA collaborated closely with
research partners in order to illustrate interesting views to the users that will actually
help them in their real-life business.

 Step 4: After the initial GUI designs and user views have been agreed, respective UML
and sequence diagrams were designed in order to facilitate the S/W implementation
at a later stage. The UML diagrams (one for the algorithmic inputs and another one
for algorithmic outputs per selected UCS) will help in the development of the central
FLEXGRID database. The sequence diagram (one per HLUC) will help in the
development of the APIs and the exact information exchange between the
FLEXGRID’s database, frontend and backend services.

 Step 5: In the last step of the data modelling work, the RESTful APIs have been
developed. This means that the raw data models (i.e. in the form of tables as shown
in chapters 3-5 below) have been transformed into a json format that can be easily
read by REST API servers and clients. These RESTful APIs are also available in .yml files,
so that it can be easily visualized and potentially used by interested developers via
online swagger editors (https://editor.swagger.io/).

https://editor.swagger.io/

14

Figure 2: Data modelling methodology

On top of all this data modeling work, there is a holistic energy market architecture based on
which the various market stakeholders interact with each other via the proposed FLEXGRID
ATP. The current EU regulatory framework adopts the “no-DLFM” architecture and thus
FLEXGRID uses it as a benchmark. This means that nowadays there is no real-life Distribution
Level Flexibility Market (DLFM) in Europe. According to FLEXGRID, we introduce the Reactive
DLFM (R-DLFM) architecture, which is quite close and compatible with the existing
regulation. Within the WP6 context, FLEXGRID develops the ATP taking into consideration
the R-DLFM model. However, FLEXGRID ATP could also support other energy market
architectures like P-DLFM and I-DLFM in the future. Extensive simulation and emulation
tests in a laboratory environment (i.e. TRL 4) that will compare the various x-DLFM
architectures will take place in the context of WP7.

More details about the data model of the various x-DLFM architectures are provided in
chapter 2 of the current report. Chapters 3-5 describe the data model for each one of the
selected UCS (or else algorithms and functionalities that will be integrated in FLEXGRID ATP).
As a first S/W integration step, FLEXGRID will integrate the first algorithm (UCS 2.3) and
have a live demonstration during the Period 1 Review meeting. Right after, all other UCS
will be integrated following a similar S/W integration plan. More technical details about this
S/W integration process are provided in D6.2 (M18).

15

2 FLEXGRID x-DLFM architectures
As already mentioned, in WP6 work (i.e. TRL 5), we focus on the Reactive Distribution Level
Flexibility Market (DLFM) architecture, which is the most compatible with the today’s EU
regulatory framework. However, in the next chapters, it is also explained under which
assumptions could FLEXGRID algorithms be applicable for all x-DLFM architecture variants.
Before analyzing the data model per UCS, it is important to describe how all the proposed
FLEXGRID mathematical models and algorithms are placed in a single energy market
architecture. For example, the timing (i.e. when?) that each algorithm runs, within which
energy market context it runs and what is the sequence of markets that is being assumed
are important considerations that directly affect the data model.

In the following sections, we provide detailed sequence diagrams that explain the following
holistic energy market architectures:

 No-DLFM architecture

 R-DLFM architecture

 P-DLFM architecture

 I-DLFM architecture

In section 2.4 of D5.14, we provided an extensive summary of the proposed FLEXGRID x-DLFM
architectures. Leveraging on the NPC’s expertise in energy markets’ design, as Nord Pool is
one of the most prestigious Market Operators (MOs) in Europe, we have made the following
realistic assumptions about the organization of FLEXGRID x-DLFM architectures:

 The Market Operator - MO (e.g. Nord Pool) operates day-ahead and intra-day energy
markets at the transmission network (TN) level.

 The Flexibility Market Operator – FMO (e.g. NODES) operates day-ahead and intra-day
energy markets at the distribution network (DN) level. This entity may also be called
Local Market Operator (LMO).

 The Transmission System Operator – TSO operates the day-ahead reserve and balancing
energy markets at the TN level.

 The Distribution System Operator – DSO operates the day-ahead reserve and balancing
energy markets at the DN level.

Within the FLEXGRID project, we assume the sequence of the 3 following markets: i) day-
ahead energy market, ii) day-ahead reserve market, and iii) near-real-time balancing energy
market. Finally, we assume that this sequence of 3 markets may also take place for the
distribution network level, too.

In the sequence diagram below, the baseline architecture that represents the today’s
regulatory framework (i.e. without any DLFM) is illustrated. In the horizontal axis, all basic
energy market stakeholders are depicted, namely:

 Market Operator (MO)

4 https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D5.1_final_03122020.pdf

https://flexgrid-project.eu/assets/deliverables/FLEXGRID_D5.1_final_03122020.pdf

16

 Transmission System Operator (TSO)

 Energy Service Provider (ESP) that uses the FLEXGRID’s FST services

 Aggregator that uses the FLEXGRID’s AFAT services

 Flexibility Market Operator (FMO) that uses the FLEXGRID’s FMCT services5

 Distribution System Operator (DSO) that uses the FLEXGRID’s FMCT services

In the vertical axis, the temporal sequence of markets is illustrated. For example, in the no-
DLFM architecture, where there exist no distribution-level markets, we assume 3 main
markets, while in Reactive DLFM architecture, we assume one more market (i.e. DLFM),
which takes place after the day-ahead energy and reserve markets and before the near-real-
time balancing market.

There are also several colored boxes, which represent the FLEXGRID mathematical models
and algorithmic solutions, whose data models are described in detail in chapters 3-5 of this
document. More specifically, orange boxes represent WP3 algorithms (i.e. aggregator-
related), blue boxes represent WP4 algorithms (i.e. ESP-related) and purple boxes represent
WP5 algorithms (i.e. related with FMO and DSO). There are also several black boxes that
represent algorithms and processes that are out of FLEXGRID’s scope. This means that
FLEXGRID does not make any novel scientific contributions in these processes, but we rather
assume some state-of-the-art implementations in order to develop the holistic energy
market architecture. The dotted arrows represent the results from one process, which are
communicated to another market actor in order to serve as an input to another process.

Figure 3: No-DLFM architecture representing the today’s EU regulatory framework

5 FMO is not present in the no-DLFM architecture. It is a new market entity that is introduced within FLEXGRID
project.

17

As shown in Figure 3, the three blue boxes represent the mathematical model and
algorithmic solution developed within UCS 2.3, whose data model is extensively analyzed in
section 4.3 below6. These blue boxes also involve the market price forecasting algorithms
that are developed within UCS 4.4, whose data model is extensively analyzed in section 4.4.
The orange box of Figure 3 represents the mathematical model and algorithmic solution
developed within UCS 4.3, whose data model is extensively analyzed in section 5.2.

Within WP6, we will integrate the above-mentioned algorithms. The ESP and aggregator
users will be able to fill in input parameters and configure a new simulation scenario in the
FST/AFAT frontend (GUI), the respective algorithm will run in the FST/AFAT backend and
finally the results will be visualized by the user in the FLEXGRID ATP.

As already mentioned, the proposed Reactive DLFM architecture is compatible with the
existing EU regulatory framework. This is the reason why we decided to implement it until
TRL 5 via the deployment of FLEXGRID ATP. The respective data models of the short-listed
UCS are extensively described in chapters 3-5.

Figure 4: Reactive DLFM architecture (DLFM follows DA-EM and DA-RM)

6 In no-DLFM architecture, the ESP participates in the three existing markets, while in R-DLFM the ESP can also
participate in the new DLFM introduced by FLEXGRID.

18

In Figure 4, the WP5 processes are also illustrated. The purple box represents the algorithm
that dynamically generates a FlexRequest for the DSO user. This FlexRequest is a price vs.
quantity curve for a given timeframe and location that represents the various price/quantity
tuples that the DSO requests for a flexibility service in order to be able to deal with imminent
local congestion and voltage control issues at a specific geographical location of its
distribution network. The elongated purple box represents the market clearing process
(auction-based or pay-as-bid) that should be run by the FMO. This market clearing process
tries to match the DSO’s FlexRequests with the FlexOffers made by the ESPs and aggregators.
This can be done via two main algorithms, namely: i) auction-based market clearing (i.e. the
algorithm runs once after the gate closure), and ii) pay-as-bid continuous market clearing7.
We also assume that day-ahead dispatch (DAD) results have already been published by the
MO, so the energy “positions” of all players are known and thus are used as inputs to the
FMO’s network-aware market clearing algorithm. Another important assumption is that the
DLFM clearing results are used as input for the clearing of the near-real-time balancing
market operated by the TSO. This implicitly means that the ESPs/aggregators will have to
pay/get paid for the possible imbalances that they incur due to the change of their day-ahead
energy “positions”, because of the fact that they had to provide their flexibility to the DSO.
Extensive details about the exact data model of the various market clearing algorithms for
the various flexibility products (i.e. energy, active power reserve, reactive power reserve) are
presented in sections 3.1, 3.2 and 3.3 below.

There are also four blue boxes that represent the optimal bidding algorithm for the ESP user
that is analyzed in UCS 2.3 in section 4.3. The only difference with the no-DLFM architecture
presented earlier is that there is one more optimized FlexOffer made by the ESP to the FMO.
These four bids made by the ESP are co-optimized in order to maximize the ESP’s revenues.
There is one more blue box that takes place after the DLFM clearing results are published and
represents the ESP’s optimal scheduling algorithm in order to minimize its OPEX. The detailed
data model for this algorithm is presented in section 4.1 and corresponds to the UCS
algorithm 2.1.

Regarding the aggregator user and the respective AFAT services, there are three orange
boxes, which correspond to two main algorithms. The first orange box represents the optimal
FlexOffer made by the aggregator to the FMO in the context of DLFM, while the third orange
box represents the optimal aggregator’s bidding in the near-real-time balancing market
operated by the TSO. The data model of this bidding process is analyzed in section 5.2 (UCS
4.3). The second orange box represents the mathematical model and algorithmic solution of
UCS 4.1, whose data model is analyzed in section 5.1. In particular, once the DLFM clearing
results are published, the aggregator is informed about the FlexRequest schedule that has to
execute. Thus, it applies a scheduling algorithm to optimally manage the FlexRequest in a
way that maximizes the aggregator’s profits and does not violate the end user’s constraints
that are explicitly stated and agreed in the FlexContracts.

7 The pay-as-bid market clearing algorithm is implemented by NODES platform. FLEXGRID extends this approach
by applying a network-aware market clearing approach.

19

The basic characteristic of P-DLFM is that distribution network (DN) level markets are cleared
before the TN-level ones, so the 3 types of DLFMs operate proactively and thus based on
their results, the TN-level markets follow. This process can also be seen as a “DN feasibility
check” in order to mitigate the main drawback of the aforementioned R-DLFM model, which
is the difficulty to manage an infeasible or expensive TN-level dispatch schedule. We assume:

 one day-ahead distribution level energy market (DA-DLEM) that takes place before
the existing DA energy market (transmission level), and

 one near-real-time balancing market at distribution network level that takes place
right before the existing balancing market operated by the TSO.

Figure 5: Proactive DLFM (DLFM precedes DA-EM and DA-RM)

The P-DLFM sequence diagram is illustrated in Figure 5. Regarding the DLFM clearing process
(cf. two long purple boxes), the major difference compared to R-DLFM architecture is that
the energy product is traded and not up/down reserve products. More details about the data
model of this market clearing process is presented in section 3.1 (UCS 1.1). Correspondingly,
the bidding algorithms and FlexOffers can also be slightly changed in order to serve the
purpose of the energy products that are traded in both day-ahead and near-real-time
timeframes.

Note: There are several variants of P-DLFM architecture that may be considered and are
extensively described in section 2.4 of previous D5.1. Within the WP6 context, only the R-

20

DLFM architecture will be implemented, while one basic P-DLFM variant will also be
supported. More specifically, the assumption is that residual DN-level FlexOffers that have
not been accepted in the DN-level markets can be automatically forwarded to the TSO via a
dedicated API. This means that the FLEXGRID ATP can serve as a gateway (or else
intermediary platform) that can redirect local flexibility to the transmission level in order to
help the TSO to deal with system-level imbalances. This novel functionality is also supported
by NODES platform in a couple of real-life pilots within the EU area.

In the I-DLFM architecture model, we consider an iterative process that takes place between
the MO and FMO and between TSO and DSO until they converge to an optimal dispatch
schedule for both TN and DN levels. In the two figures below, the sequence diagrams for the
MO-FMO coordination and TSO-DSO coordination are illustrated.

Figure 6: Interactive DLEM (iterative message exchanges between MO and FMO until

convergence)

As shown in Figure 6, in the day-ahead energy market context, the MO initially runs an
instance of its market clearing problem at the TN level and sends the results to the FMO.
Then, the FMO takes as input the MO’s results and runs its own market clearing problem at
the DN level. The respective results (e.g. Lagrange multipliers) are sent back to the MO, who
runs another round of the TN-level market clearing. Of course, the dispatch schedules that
are decided in each round of algorithm’s execution are virtual and are not actuated in reality.

21

After several algorithmic iterations (i.e. several message exchanges between MO and FMO),
the process converges to an overall dispatch schedule (i.e. at both TN and DN levels) that
maximizes the social welfare8.

A similar iterative process shown in Figure 7 may take place for day-ahead reserve markets
and near-real-time balancing markets (cf. TSO-DSO collaboration). We assume that day-
ahead energy dispatch results are sent by the MO to the TSO and by the FMO to DSO. It
should be noted that the I-DLFM architecture will not be developed at TRL 5 in the context
of WP6, but rather at TRL 3 in WP5 and at TRL 4 in WP7 (cf. lab tests using AIT’s large research
infrastructure). I-DLFM is quite futuristic approach and is also incompatible with the existing
EU regulation, even though it can theoretically achieve better social welfare results.
However, the FLEXGRID data models that are followed in all I-DLFM processes are similar to
the ones presented in the previously mentioned architectures.

Figure 7: Interactive DLFM (iterative message exchanges between TSO and DSO until

convergence)

8 By the term “social welfare”, we mean market efficiency and it is generally defined as the sum of all suppliers’
profits and the “profits” from the demand side (i.e. consumers’ utility minus costs).

22

3 Data model for the FMO and DSO user’s
frontend and FMCT backend

In this UCS, we consider a Flexibility Market Operator (FMO), who clears a local energy
market after (i.e. R-DLEM) the transmission level commitments have been cleared. This
means that some of the local generators and loads may already have committed parts of
their energy to the wholesale transmission level (i.e. day-ahead energy market). The FMO
runs a continuous pay-as-bid market, where FlexRequest from the DSO (i.e. FlexDemand side)
and FlexOffers from ESPs (i.e. FlexSupply side) are continuously accepted and added to the
orderbook. When the prices match, a network check is performed in order to ensure that no
distribution network constraint is violated. Without loss of generality and within FLEXGRID’s
context, we assume that the full network model of the DSO is known to the FMO, as well as
the active and reactive power setpoints committed in the wholesale transmission level
market. The aim of the FMO is to maximize social welfare by matching all bids that result in
feasible power flows. An auction-based market clearing algorithm (i.e. pay-as-clear) will also
be available.

The novelty of the FLEXGRID’s algorithmic approach is that the FMO clears the market
continuously (or on an auction basis) and under full consideration of network
constraints, i.e., including line and transformer ratings, reactive power limits, and
voltage bands.

3.1.1 Proposed algorithm to integrate in FMCT

Technical details about the mathematical model, algorithmic solution and initial performance
evaluation results are provided in chapter 2 of D5.2 (i.e. TRL 3). Within WP6 context (i.e. TRL
4-5), our main goal is to demonstrate that the FMO user visualizes in ATP the FlexRequest
and FlexOffers that were accepted, and those that are rejected.

This algorithm could also be applicable for all other x-DLEM architecture variants; for P-DLEM,
if all setpoints from the wholesale market are set to zero, and for I-DLEM if the setpoint of
active and reactive power exchange at the Point of Common Coupling (PCC) are iteratively
exchanged between wholesale (or else transmission network level) and local (or else
distribution network level) market levels.

We distinguish two main operation modes for the FMO’s GUI, namely:
● Online operation: The FMO user has the initiative. It accepts FlexOffers and

FlexRequests and matches them in a continuous fashion whenever a new bid
arrives. These cleared bids should also be made visible for the ESP user (i.e.
FlexSeller) and DSO user (i.e. FlexBuyer).

● Offline operation: The FMO user runs various “what-if” simulation scenarios (using
various OPF formulations and market clearing algorithms) to identify how it can
achieve maximum expected social welfare. Only the FMO user will be able to
visualize the results.

23

The market clearing process of this UCS has the purpose to clear energy on the day-ahead,
intra-day, or in real-time.

● This traded product is defined as active power per time unit, i.e., energy in MWh/h.
● With a short lead time, pay-as-bid is recommended, with a long lead time, auctions

(i.e. pay-as clear) are recommended.

In order to integrate the proposed mathematical model and algorithm at TRL 5, we have
made the following assumptions:

● We clear only active energy per time unit, in e.g. MWh/h or kWh/(15min).
● Single-level optimization problem (i.e. the problem of the DSO and the problem of

the TSO can be decoupled, as long as they know/forecast their state variables).
● The DLFM may clear before, simultaneous, or after the TSO’s reserve or balancing

market. The important feature is that DSOs and TSO must exchange information
about their state variables, or at least about their active and reactive power exchange
at the interface node (i.e. TSO-DSO coupling points).

● Convex reformulation of the Optimal Power Flow (OPF) algorithm; either a convex
AC-OPF reformulation (SOCP) or a DC-OPF with an approximation of voltages at each
bus.

● For the auction-based market clearing algorithm, Distribution Locational Marginal
Prices (dLMPs) are computed at each distribution node or zone.

3.1.2 Algorithmic inputs and outputs and FMO/DSO frontend ideas

The following tables summarize the input parameters for the algorithm to run in the FMCT
backend and output parameters for the results to be visualized in FMO’s GUI (i.e. FMCT
frontend) respectively.

Input parameters FMO GUI in ATP Central FG database

 Select FMO/DSO data per country
(drop down menu with a few
countries, e.g. Germany, Norway,
Croatia)

The static Mongo-DB API
will fetch the FMO user’s
inputs to the DB. The DB-
FMCT API will fetch the
selected time interval
and selected markets
from the central DB to
the FMCT.

 Select time interval ‘X’ date to ‘Y’
date (cf. calendar)

Energy balance forecast Forecast load and generation at
each node (assumed as known in
WP5)

Distribution network data Lines with impedances, line current
limits, bus voltage limits, bus
voltage phase angle limits.

Day-ahead energy market price
quantity bids from all ESP users
sorted by node and price
(€/MWh)9 10

Select for day-ahead energy market
price data (cf. checkbox)

Reserve market price quantity
bids (up/down) from all ESP

Select for reserve market price data
(cf. checkbox)

9 For reserve, DLFM and balancing markets, up and down regulation prices will be used.
10 in the case of R-DLFM

24

users sorted by node and price

(€/MW) 9 10

DLFM market FlexOffers (price
quantity bids up/down) from all
ESP users sorted by node and
prices11 (€/MWh + €/MVar)

Select for DLFM price data (cf.
checkbox)

The ATP-FST API will fetch
the required data based
on ESP user’s inputs to
FST.

DLFM market FlexRequests
(price quantity bids up/down)
from DSO sorted by node and
prices11 (€/MWh + €/MVar)

Select DSO location areas (insert
number)

The ATP-DB API will store
the algorithmic results in
the central DB.

Balancing market price quantity
bids (up/down) from all ESP
users sorted by node and price
(€/MWh)

Select for balancing market price
data (cf. checkbox)

The DB-ATP API will
retrieve the data from the
central DB.

ESP user unit specifications (fill
in parameters in the GUI)

Fill in (for every ESP user unit – the
user can add several units):
- power capacity (kW)
- energy capacity (kWh)
- location of unit (node)

The ATP-FST API will fetch
the required data based
on ESP user’s inputs to
FST.

Type of market clearing
algorithm

Select from drop-down menu:
- pay-as-bid
- pay-as-clear

Type of market clearing
algorithm

Type of optimal power flow Select from dropdown menu:
- Second order cone relaxation of
AC-OPF
- DC-OPF with approximations of
losses and voltages

Type of optimal power
flow

(Optional: Active power
exchange from TSO)

Default value is 0 (Optional: Active power
exchange from TSO) 3

(Optional: Reactive power
exchange from TSO)

Default value is 0

(Optional: Excess active power
FlexOffers not cleared in the FM,
available for DLFM)

Default value is 0

Output parameters FMO GUI in ATP Central FG database

dLMP for all distribution nodes

A graph that depicts:
- Aggregate Quantity offered vs.

price
- Price accepted vs. node

The ESP and DSO users should also
be able to visualize these curves on
their own GUIs.

Quantity of active power, i.e.,
energy per time period for all
distribution nodes

A graph that depicts the accepted
price vs. node

The FMCT-ATP API will
fetch the results from the
FMCT to ATP.

11 We assume a few location areas (cf. “polygons” concept from NODES platform) with different LMPs.

25

The FMCT-DB API will
store the same results to
the central DB.

Voltages at all distribution nodes A graph that depicts the voltages vs.
node

Power flows over all distribution
lines

A graph that depicts the power
flows vs. lines

Voltage angles at all distribution
nodes

A graph that depicts the voltage
angles vs. node

(Optional: Active power
exchange with TSO)12

(Optional: Reactive power
exchange with TSO) 12

(Optional: Excess energy
FlexOffers not cleared in the
DLFM, available for TSO’s
balancing market) 12

A graph that depicts:
- Aggregate unaccepted quantity

vs. price
- Unaccepted price vs. node

3.1.3 UML diagrams

Figure 8: UML diagram for the ATP-FMCT API of UCS 1.1, UCS 1.2 and UCS 1.3 (i.e. FMO user’s

inputs filled in FMCT frontend and posted to FMCT backend)

12 in the case of P-DLFM.

26

Figure 9: UML diagram for the ATP-FMCT API of UCS 1.1, UCS 1.2 and UCS 1.3 (i.e. algorithmic

results produced by FMCT backend and visualized in FMCT frontend)

The two figures above depict the UML diagrams for UCS 1.1, UCS 1.2 and UCS 1.3 (the 3 of
them share the same structure of inputs and outputs). The first one is the data model
representation of the input parameters described in the table above regarding the ATP-FMCT
API. The second one is the data model representation of the output parameters described in
the table above regarding the FMCT-ATP API.

In this UCS, we consider a Flexibility Market Operator (FMO), who clears a local active power
reserve market after (R-DLFM) the transmission level commitments have been cleared. This
means that some of the local generators and loads may already have committed parts of
their energy and/or reserve to the wholesale transmission level. The FMO runs a continuous
pay-as-bid market where FlexRequest from the DSO and FlexOffers from FSPs are
continuously accepted and added to the orderbook. When the prices match, a network check
is performed in order to ensure that no network constraint is violated. Without loss of
generality and within FLEXGRID’s context, we assume that the full network model of the DSO
is known to the FMO, as well as the active and reactive power setpoints committed in the
wholesale transmission level market. The aim of the FMO is to maximize social welfare by
matching all bids that result in feasible power flows. An auction-based market clearing
algorithm (i.e. pay-as-clear) will also be available. In this algorithm, the FMO will gather all
FlexRequests and FlexOffers for a given timeframe. When the gate closes, no other bids will
be accepted and the network-aware auction-based market clearing algorithm will run.

The novelty of the FLEXGRID’s algorithmic approach is that the FMO clears the market
continuously (or on an auction basis) and under full consideration of network
constraints, i.e., including line and transformer ratings, reactive power limits, and
voltage bands. A second contribution is that this algorithm ensures that any combination
of reserve activation is feasible for the network, opposed to current approaches, where
one feasible reserve activation suffices.

3.2.1 Proposed algorithm to integrate in FMCT

Technical details about the mathematical model, algorithmic solution and performance
evaluation results are provided in chapter 3 of D5.2 (i.e. TRL 3). Within WP6 context (i.e. TRL
4-5), our main goal is to demonstrate that the FMO user visualizes in ATP the FlexRequest

27

and FlexOffers that were accepted, and those that are rejected together with other
important information that is presented below.

This algorithm could also be applicable for all other x-DLFM architecture variants; for P-DLFM
if all setpoints from the wholesale market are set to zero, and for I-DLFM if the setpoint of
active and reactive power exchange at the PCC are iteratively exchanged between wholesale
and local market levels.

We distinguish two main operation modes for the FMO’s GUI, namely:
● Online operation: The FMO user has the initiative. It accepts FlexOffers and

FlexRequests and matches them in a continuous fashion whenever a new bid
arrives. These cleared bids should also be made visible for the FSP user (i.e.
FlexSeller) and DSO user (i.e. FlexBuyer).

● Offline operation: The FMO user runs various “what-if” simulation scenarios to
identify how it can achieve maximum expected social welfare. Only the FMO user
will be able to visualize the results.

The market clearing has the purpose to procure a vital DSO reserve service:

 Congestion Management Reserve: This reserve product consists of active power
reserves (up- and downward) that are paid for their reserve power, but may not
necessarily be activated in real-time.

In order to integrate the proposed mathematical model and algorithm at TRL 5, we have
made the following assumptions:

● We clear only active power reserves, not energy.
● Single-level optimization problem (i.e. the problem of the DSO and the problem of

the TSO can be decoupled, as long as they know/forecast their state variables).
● The DLFM may clear before, simultaneous, or after the TSO’s FM. The important

feature is that DSOs and TSO must exchange information about their state variables,
or at least about their active and reactive power exchange at the interface node.

● Convex reformulation of the Optimal Power Flow (OPF) algorithm; either a convex
AC-OPF reformulation (SOCP) or a DC-OPF with an approximation of voltages at each
bus.

● For the auction-based market clearing algorithm, Distribution Locational Marginal
Prices (dLMPs) must be computed at each distribution node.

3.2.2 Algorithmic inputs and outputs and FMO/DSO frontend ideas

The following tables summarize the input parameters for the algorithm to run in the FMCT
backend and output parameters for the results to be visualized in FMO’s GUI (i.e. FMCT
frontend) respectively.

Input parameters FMO GUI in ATP Central FG database

 Select FMO/DSO data per country
(drop down menu with a few
countries, e.g. Germany, Norway,
Croatia)

The ATP-DB API will fetch
the FMO user’s inputs to
the DB. The DB-FMCT API
will fetch the selected time

28

 Select time interval ‘X’ date to ‘Y’
date (cf. calendar)

interval and selected
markets from the central
DB to the FMCT Energy balance forecast Forecast load and generation at

each node

Distribution network data In the form of a distribution
network ID: Lines with
impedances, line current limits,
bus voltage limits, bus voltage
phase angle limits.

Day-ahead energy market price
quantity bids from all ESP users
sorted by node and price
(€/MWh)

Select for day-ahead energy
market price data (cf. checkbox)

Reserve market price quantity
bids (up/down) from all ESP
users sorted by node and price
(€/MW)

Select for reserve market price
data (cf. checkbox)

DLFM market price quantity bids
(up/down) from all ESP users
sorted by node and prices
(€/MWh + €/MVar)

Select for DLFM price data (cf.
checkbox)

DLFM market FlexRequests
(price quantity bids up/down)
from DSO sorted by node and
prices (€/MWh + €/MVar)

Select DSO location areas (insert
number)

Balancing market price quantity
bids (up/down) from all ESP
users sorted by node and price
(€/MWh)

Select for balancing market price
data (cf. checkbox)

ESP user unit specifications (fill
in parameters in the GUI)

Fill in (for every ESP user unit – the
user can add several units):
- power capacity (kW)
- energy capacity (kWh)
- location of unit (node)

The ATP-FMCT API will fetch
the required data based on
ESP user’s inputs to FMCT.

Type of market clearing
algorithm

Select from dropdown menu:
- pay-as-bid
- pay-as-clear

Type of optimal power flow Select from dropdown menu:
- Second order cone relaxation of
AC-OPF
- DC-OPF with approximations of
losses and voltages

(Optional: Active power
exchange from TSO)

Default value is 0 The ATP-FMCT API will fetch
the required data from the
TSO’s inputs to FMCT (Optional: Reactive power

exchange from TSO)
Default value is 0

(Optional: Excess active power
FlexOffers not cleared in the
TSO’s reserve market, available
for DLFM)

Default value is 0

29

Output parameters FMO GUI in ATP Central FG database

dLMP for all distribution nodes

A graph that depicts:
- Aggregate Quantity offered vs.

price
- Price accepted vs. node

The ESP and DSO users should also
be able to visualize these curves
on their own GUIs.

Quantity of active power reserve
for all distribution nodes

A graph that depicts the accepted
price vs. node

The FMCT-ATP API will fetch
the results from the FMCT
to ATP.

The FMCT-DB API will store
the same results to the
central DB.

Votages at all distribution nodes A graph that depicts the voltages
vs. node

Power flows over all distribution
lines

A graph that depicts the power
flows vs. lines

Voltage angles at all distribution
nodes

A graph that depicts the voltage
angles vs. node

(Optional: Active power
exchange with TSO)13

Double type value

(Optional: Reactive power
exchange with TSO) 13

Double type value

(Optional: Excess active power
FlexOffers not cleared in the
DLFM, available for TSO’s
reserve market) 13

A graph that depicts:
- Aggregate unaccepted

quantity vs. price
- Unaccepted price vs. node

3.2.3 UML diagrams

Taking into account the inputs and outputs of this UCS are the same also for UCS 1.1 and
UCS1.3, the same UML diagrams depicted in Section 3.1.3 also apply to this UCS.

In this UCS, we consider a Flexibility Market Operator (FMO), who clears a local reactive
power reserve market after (R-DLFM) the transmission level commitments have been
cleared. This means that some of the local generators and loads may already have committed
parts of their energy and/or reserve to the wholesale transmission level. The FMO runs a
continuous pay-as-bid market where FlexRequest from the DSO and FlexOffers from ESPs are
continuously accepted and added to the orderbook. When the prices match, a network check
is performed in order to ensure that no network constraint is violated. Without loss of

13 in the case of P-DLFM

30

generality and within FLEXGRID’s context, we assume that the full network model of the DSO
is known to the FMO, as well as the active and reactive power setpoints committed in the
wholesale transmission level market. The aim of the FMO is to maximize social welfare by
matching all bids that result in feasible power flows. An auction-based market clearing
algorithm (i.e. pay-as-clear) will also be available. In this algorithm, the FMO will gather all
FlexRequests and FlexOffers for a given timeframe. When the DLFM gate closes, no other
bids will be accepted and the network-aware auction-based market clearing algorithm will
run to clear the market.

The novelty of the FLEXGRID’s algorithmic approach is that the FMO clears the market
continuously (or on an auction basis) and under full consideration of network
constraints, i.e., including line and transformer ratings, reactive power limits, and
voltage bands. A second contribution is that this algorithm ensures that any combination
of reserve activation is feasible for the network, opposed to current approaches, where
one feasible reserve activation suffices.

3.3.1 Proposed algorithm to integrate in FMCT

Technical details about the mathematical model, algorithmic solution and performance
evaluation results are provided in chapter 3 of D5.2 (i.e. TRL 3). Within WP6 context (i.e. TRL
4-5), our main goal is to demonstrate that the FMO user visualizes in ATP the FlexRequest
and FlexOffers that were accepted, and those that are rejected together with other
important information that is presented below.

This algorithm could also be applicable for all other x-DLFM architecture variants; for P-DLFM
if all setpoints from the wholesale market are set to zero, and for I-DLFM if the setpoint of
active and reactive power exchange at the PCC are iteratively exchanged between wholesale
level and local levels.

We distinguish two main operation modes for the FMO’s GUI, namely:
 Online operation: The FMO user has the initiative. It accepts FlexOffers and

FlexRequests and matches them in a continuous fashion whenever a new bid
arrives. These cleared bids should also be made visible for the FSP user (i.e.
FlexSeller) and DSO user (i.e. FlexBuyer).

 Offline operation: The FMO user runs various “what-if” simulation scenarios to
identify how it can achieve maximum expected social welfare. Only the FMO user
will be able to visualize the results.

The market clearing has the purpose to procure a vital DSO reserve service:

 Voltage Management Reserve: This reserve product consists of reactive power
reserves (up- and downward) that are paid for their reserve power, but may not
necessarily be activated in real-time.

In order to integrate the proposed mathematical model and algorithm at TRL 5, we have
made the following assumptions:

 We clear only reactive power reserves, not energy.

31

 Single-level optimization problem (i.e. the problem of the DSO and the problem of
the TSO can be decoupled, as long as they know/forecast their state variables).

 The DLFM may clear before, simultaneous, or after the TSO’s reserve market. The
important feature is that DSOs and TSO must exchange information about their state
variables, or at least about their active and reactive power exchange at the interface
node.

 Convex reformulation of the Optimal Power Flow (OPF) algorithm; either a convex AC
OPF reformulation (SOCP) or a DC OPF with an approximation of voltages at each bus.

 For the auction-based market clearing, Reactive Distribution Locational Marginal
Prices (qLMPs) must be computed at each distribution node.

3.3.2 Algorithmic inputs and outputs and FMO/DSO frontend ideas

The following tables summarize the input parameters for the algorithm to run in the FMCT
backend and output parameters for the results to be visualized in FMO’s GUI (i.e. FMCT
frontend) respectively.

Input parameters FMO GUI in ATP Central FG database

Select FMO/DSO data per country
(drop down menu with a few
countries, e.g. Germany, Norway,
Croatia)

The ATP-DB API will fetch the
FMO user’s inputs to the DB.
The DB-FMCT API will fetch the
selected time interval and
selected markets from the
central DB to the FMCT

Select time interval ‘X’ date to ‘Y’
date (cf. calendar)

Energy balance forecast Forecast load and generation at
each node

Distribution network data In the form of a distribution
network ID: Lines with
impedances, line current limits,
bus voltage limits, bus voltage
phase angle limits.

Day-ahead energy market
price quantity bids from all
ESP users sorted by node
and price (€/MWh)

Select for day-ahead energy
market price data (cf. checkbox)

Reserve market price
quantity bids (up/down)
from all ESP users sorted by
node and price (€/MW)

Select for reserve market price
data (cf. checkbox)

DLFM market price
quantity bids (up/down)
from all ESP users sorted by
node and prices (€/MWh +
€/MVar)

Select for DLFM price data (cf.
checkbox)

DLFM market FlexRequests
(price quantity bids
up/down) from DSO sorted
by node and prices (€/MWh
+ €/MVar)

Select DSO location areas (insert
number)

32

Balancing market price
quantity bids (up/down)
from all ESP users sorted by
node and price (€/MWh)

Select for balancing market price
data (cf. checkbox)

ESP user unit specifications
(fill in parameters in the
GUI)

Fill in (for every ESP user unit – the
user can add several units):
 power capacity (kW)
 energy capacity (kWh)
 location of unit (node)

The ATP-FMCT API will fetch the
required data based on ESP
user’s inputs to FMCT

Type of market clearing
algorithm

Select from dropdown menu:
- pay-as-bid

- pay-as-clear

Type of optimal power flow Select from dropdown menu:
- LinDistFlow

(Optional: Active power
exchange from TSO) cf.
R-DLFM case

Default value is 0 The ATP-FMCT API will fetch the
required data from the TSO’s
inputs to FMCT.

(Optional: Reactive power
exchange from TSO) cf.
R-DLFM case

Default value is 0

(Optional: Excess reactive
power FlexOffers not
cleared in the FM, available
for DLFM) cf. R-DLFM
case

Default value is 0

Output parameters FMO GUI in ATP Central FG database

dLMP for all distribution
nodes

A graph that depicts:
 Aggregate Quantity offered vs.

price
 Price accepted vs. node

The ESP and DSO users should also
be able to visualize these curves on
their own GUIs.

qLMP for all distribution
nodes

A graph that depicts:
 Aggregate Quantity offered vs.

price
 Price accepted vs. node

The ESP and DSO users should also
be able to visualize these curves on
their own GUIs.

The FMCT-ATP API will fetch the
results from the FMCT to ATP.

The FMCT-DB API will store the
same results to the central DB.

Quantity of active power
reserve for all distribution
nodes

A graph that depicts the accepted
price vs. node

The FMCT-ATP API will fetch the
results from the FMCT to ATP.

33

Quantity of reactive power
reserve for all distribution
nodes

A graph that depicts the accepted
price vs. node

The FMCT-DB API will store the
same results to the central DB.

Voltages at all distribution
nodes

A graph that depicts the voltages
vs. node

Power flows over all
distribution lines

A graph that depicts the power
flows vs. lines

Voltage angles at all
distribution nodes

A graph that depicts the voltage
angles vs. node

(Optional: Active power
exchange with TSO) cf.
P-DLFM case

Double type value

(Optional: Reactive power
exchange with TSO) cf.
P-DLFM case

Double type value

(Optional: Excess active
power FlexOffers not
cleared in the DLFM,
available for TSO’s reserve
market) cf. P-DLFM case

A graph that depicts:
 Aggregate unaccepted

quantity vs. price
 Unaccepted price vs. node

3.3.3 UML diagrams

Taking into account the inputs and outputs of this UCS are the same also for UCS 1.1 and UCS
1.2, the same stricture of UML diagrams depicted in Section 3.1.3 above also apply to this
UCS.

As already discussed, we will integrate three UCS (and respective network-aware market
clearing algorithms) in the Flexibility Market Clearing Toolkit (FMCT). The S/W architecture
follows a modular-by-design approach, which allows the different S/W modules to be
developed on a standalone basis by the various partners and communicate with each other
via well-defined and fine-grained APIs. The following figure describes in five main steps the
process that will be followed. There are three main S/W components that will be developed,
namely:

 ATP GUI or else FMCT frontend: this will be developed by ETRA.

 FMCT backend: this will be developed by DTU (cf. UCS 1.1 – 1.3).

 FLEXGRID Central Database: this will be developed by ETRA, while real-life input data
will be provided by DTU (in collaboration with other consortium partners, too).

First of all, the FMO user will login the FLEXGRID ATP, will be authenticated through a single
sign-on process and then will be redirected to the main FMO’s GUI. Via the FMCT application,
the FMO user will be able to visualize, configure and manage the DLFM under consideration.
Three main products are considered: i) active power (energy) product (cf. UCS 1.1), ii) active
power reserve product (cf. UCS 1.2), and iii) reactive power reserve product (cf. UCS 1.3).

34

Moreover, the FMO user will be able to run the DLFM clearing algorithms in order to decide
on optimal dispatch decisions that minimize the flexibility procurement cost and
communicate them to the involved stakeholders (i.e. DSO and ESPs).

For each one of the three algorithms, there will be a tab in the FMCT frontend. Once the FMO
user clicks on one tab, s/he will be able to configure/customize/fill in the input parameters
that are needed for each algorithm to be able to run. Once the FMO user clicks on the “Run
algorithm” button, step 1 process will be followed14. More specifically, the API client that
resides at the FMCT frontend will automatically gather all input parameters and will send
them to the API server that resides at the FMCT backend.

After the FMCT backend receives the input parameters, the next step is to request for the
required input data from the FLEXGRID central database (DB). More specifically, an API client
that resides at FMCT backend may request for input data from an API server residing at the
central DB. In step 3, the input data is retrieved, and now the algorithm can be executed.

Once the algorithm produces the results, these output parameters will be automatically
gathered by the FMCT-ATP API and will be sent to the FMCT frontend so that the FMO user
can visualize the results in a comprehensive and user-friendly manner. The final step (i.e. step
5) is for the FMO user to understand the results and if s/he is interested in further elaborating
on them, then s/he can optionally select to store them in the central DB in order to be able
to retrieve, visualize and possibly compare them with other market clearing results in the
future.

Figure 10: Sequence diagram for communication among ATP frontend, FMCT backend and central

FLEXGRID database

14 More technical details about the steps depicted in Figure 10 are provided in FLEXGRID D6.2.

35

4 Data model for the ESP user’s frontend and
FST backend

In this UCS, we consider a profit-oriented Energy Service Provider (ESP), who owns a set of
Battery Storage Units (BSUs). In the case that the model is not network-aware, the location
of the BSUs is not relevant, but only their characteristics (e.g. capacity, efficiency, etc.). On
the TRL 5 level, we consider: 1) Day-ahead energy market (DA-EM), 2) Reactive Distribution
Level Flexibility Market (R-DLFM) and 3) Balancing Market (BM). The ESP user participates in
the DA-EM and has the opportunity to maximize its profits by taking part in DLFM, too.
However, such market behaviour may lead to a change in the agreed DA-EM schedule and
this will mean that the ESP will have to pay/or get paid for the imbalances that it created in
the BM.

In order for the ESP to meet the FlexRequest requirements and maximize profit, an
optimal scheduling algorithm is utilized. More specifically, the FLEXGRID optimal
scheduling algorithm aims to minimize ESP’s operational expenses as sub-optimal
strategies may significantly reduce profits and even potentially endanger sustainability
of the company’s business model.

4.1.1 Proposed algorithm to integrate in FST

Technical details about the mathematical model, algorithmic solution and initial performance
evaluation results are provided in chapter 3 of D4.1 and chapter 3 of D4.2 (i.e. TRL 3). Within
WP6 context (i.e. TRL 5), our main goal is to demonstrate that the ESP user is able to visualize
its operational expenses (OPEX), categorized per different criteria (e.g. type of asset, point in
time). From the numerical data and visualizations, the ESP user should gain insight what could
possibly lower/increase its OPEX if changes are made in the DA-EM schedule. More precisely,
the ESP user should be able to compare the new schedule (i.e. after responding to a
FlexRequest in intra-day timeframe) versus the old one (i.e. the DA-EM schedule that has
been agreed in the day-ahead timeframe).

We distinguish two main operation modes for the ESP’s GUI, namely:

 Online operation: We assume that the day-ahead energy market (DA-EM) dispatch
is given and should be respected by the ESP. Then, a FlexRequest issued by
DSO/TSO needs to be met by the ESP. Both DA-EM dispatch and the FlexRequest
should be made visible for the ESP user. The updated/new schedule (i.e. result of
the proposed optimal scheduling algorithm) should also be made visible to the DSO
and FMO user.

 Offline operation: The ESP user runs various “what-if” simulation scenarios
assuming various FlexRequests and FlexAsset portfolios. The goal is to assess the
ESP’s hypothetical participation in the proposed DLFM in the future in a way that is
profitable for its business operation. Only the ESP user will be able to visualize these
results.

36

In order to integrate the proposed mathematical model and algorithm at TRL 5 (i.e. in the
FLEXGRID ATP), we have made the following assumptions:

 We solve a single-level optimization problem (i.e. ESP is price-taker).

 We assume that the ESP user is not network-aware (specific case would be the one
where ESP is also a DSO or in close relationship with the DSO).

 We assume that all FlexOffers in the proposed DLFM will be accepted.

 The predicted market prices are taken as a parameter, or in the case of the offline
operation – historical market prices are taken as parameter.

 We assume that the network data is provided, should (in a specific case) the model
be network-aware.

 We assume that the R-DLFM architecture is adopted, because this is the most
compatible with the existing EU regulatory framework.

4.1.2 Algorithmic inputs and outputs and ESP frontend ideas

The following tables summarize the input parameters for the algorithm to run in the FST
backend and output parameters for the results to be visualized in ESP’s GUI (i.e. FST frontend)
respectively.

Input parameters ESP GUI in ATP Central FG database
Select MO/TSO data per country (drop
down menu with a few countries, e.g.
Germany, Norway, Croatia)

The ATP-FST API will
fetch the required data

based on ESP user’s
inputs to FST. The DB-
FST API will fetch the
required market price
data, schedules and

FlexRequests from the
selected country,

selected time interval
and day-ahead market
from the central DB to

the FST.

Select time interval ‘X’ date to ‘Y’ date (cf.
calendar)

Day-ahead energy
market price data: a
vector of 24-hourly price
values per selected day
and country (€/MWh)

Select for day-ahead energy market price
data (cf. checkbox)

Day-ahead energy
schedule

Fill in or choose from an existing one

FlexRequest Fill in or choose from an existing one

Balancing market price
data: vector of 24-hourly
price values per selected
day and country
(€/MWh)

Fill in or choose from an existing one

Storage unit
specifications (fill in
parameters in the GUI)

Fill in (for every storage unit – the user can
add several units):
 power capacity (KW)
 energy capacity (KWh)
 inefficiency rate (%)
 initial/final SoE (%)
 location of storage unit (location id)

The ATP-FST API will
fetch the required data
based on ESP user’s
inputs to FST.

RES and consumption
data

Fill in or choose from existing data that is
available in the DB

The ATP-FST API will
fetch the required data

37

based on ESP user’s
inputs to FST.

Option to store data in
the central FLEXGRID
database

Checkbox that can be either checked or not. The ATP-DB API will store
the algorithmic results in
the central DB.

Past OPEX minimization
scenarios

The ESP can select a past scenario to view it
in the FST GUI.

The DB-ATP API will
retrieve the data from
the central DB.

Output parameters ESP GUI in ATP Central FG database

One optimized FlexOffer
curve per selected market
24-hourly vector of (quantity)
for the given timeframe

A graph per selected market that
depicts:
 Quantity offered vs. time

The FMO and DSO users should also
be able to visualize these curves on
their own GUIs.

The FST-ATP API will fetch
the results from the FST to
ATP.

The ATP-DB API will store
the same results to the
central DB.

Revenues (€) per selected
market and scenario

A graph per selected market that
depicts:
 Excessive revenues (€) from

participating in the DLFM

Only the ESP user visualizes these
results.

The FST-ATP API will fetch
the results from the FST to
ATP.

The ATP-DB API will store
the same results to the
central DB.

Scheduling A graph that depicts:
 Old vs. new schedule per

controllable FlexASset

Only the ESP user visualizes these
results

The FST-ATP API will fetch
the results from the FST to
ATP.

The ATP-DB API will store
the same results to the
central DB

According to the information above, a draft version of the ESP GUI sketches has been
developed by ETRA as well as the first version of the FST-ATP-DB APIs. Indicative screenshots
and more technical details can be found in D6.2.

4.1.3 UML diagrams for UCS 2.1

The following two figures depict the UML diagram for UCS 2.1. The first one is the data model
representation of the input parameters described in the table above regarding the ATP-FST
API. The second one is the data model representation of the output parameters described in
the table above regarding the FST-ATP API.

38

Figure 11: UML diagram for the ATP-FST API of UCS 2.1 (i.e. ESP user’s inputs filled in FST frontend

and posted to FST backend)

39

Figure 12: UML diagram for the ATP- FST API of UCS 2.1 (i.e. algorithmic results produced by FST

backend and visualized in FST frontend)

In this UCS, we consider a profit-oriented Energy Service Provider (ESP), who may already
own various FlexAssets and wants to possibly invest in new ones in the future. Those
FlexAssets (emphasizing mainly on the Battery Storage Units for the TRL 3) may be located
on various nodes of a radial distribution network. Depending on the ESP’s insight into the
network topology given by a respective DSO, the respective level of granularity may vary from
the node resolution to the division of the observed radial network into several zones15. For
the WP6 purposes, the ESP is assumed to participate in the following markets: 1) Day-ahead
energy market (DA-EM), 2) Reserve market (RM), 3) Reactive Distribution Level Flexibility
Market (R-DLFM).

The ESP’s CAPEX minimization problem focuses on the use of a FlexAsset siting and sizing
algorithm, when deciding on ESP's future investments on new FlexAssets. It is formulated
as a single-level problem with a network-aware approach. Although the respective ESP
might not have a full insight of the network topology, the most important information
about the zones, determined by the respective DSO upon some criteria (similarly to the
NODES approach), are provided. Moreover, CAPEX minimization problem is dependent
on various given conditions (e.g. ESP wants to reduce OPEX by 5% by investing in new
FlexAssets) and circumstances on the observed markets. Hence, OPEX should also be
considered, while tackling the CAPEX minimization problem. Such an approach should
enable efficient exploitation of available instruments to ensure reliable energy supply
with the minimum CAPEX. The main novelty lies on the inclusion of R-DLFM and DN-
aware approach.

15 This approach is adopted by NODES flexibility market. NODES follows a hierarchical structure for dividing the
DN topology into several location areas/zones.

40

4.2.1 Proposed algorithm to integrate in FST

Technical details about the mathematical model, algorithmic solution and performance
evaluation results are provided in chapter 5 of D4.1 and chapter 4 of D4.2 (i.e. TRL 3). Within
WP6 context (i.e. TRL 5), our main goal is to demonstrate ESP user’s ability to visualize its
total investment costs with respect to the given objective (e.g. 5% or 10% OPEX reduction).
Furthermore, it should be easy to categorize the costs per different criteria (type of asset and
its main characteristics, asset location, network status). In such manner, the ESP user should
have a better insight why is a specific investment (on RES and/or FlexAssets) needed and
what benefits (in addition to costs) it brings. In other words, both the minimum size of the
new FlexAsset to install and its location should be visualized.

The ESP user runs various “what-if” simulation scenarios (only offline operation) :

 Offline operation: The ESP user runs various “what-if” simulation scenarios
assuming various mixes of FlexRequests and FlexAsset portfolios. ESP assumes a
given OPEX reduction target (e.g. 5%) and tries to find the minimum CAPEX to meet
this target. Moreover, we assume a few DSO areas. Each DSO area may have
different DLFM price series, thus implying the potential DN-level
congestion/voltage problems. Only the ESP user will be able to visualize the results.

In order to integrate the proposed mathematical model and algorithm at TRL 5, we have
made the following assumptions:

 We formulated the model as a single-level optimization problem (i.e. ESP is price-
taker).

 The model is network-aware (at least following NODES platform’s design approach).

 We assume that the ESP has the possibility to participate in various electricity
markets.

 We assume that ESP and DSO may be one entity or at least the DSO provides some
high-level topology data (cf. NODES platform’s design approach).

 We assume data transparency.

 We take the predicted (or historical) market prices as an input parameter.

4.2.2 Algorithmic inputs and outputs and ESP frontend ideas

The following tables summarize the input parameters for the algorithm to run in the FST
backend and output parameters for the results to be visualized in ESP’s GUI (i.e. FST frontend)
respectively.

Input parameters ESP GUI in ATP Central FG database
Select MO/TSO data per
country (drop down menu
with a few countries, e.g.
Germany, Norway, Croatia)

The ATP-FST API will fetch the
required data based on ESP user’s
inputs to FST. The DB-FST API will

fetch the required market price data
from the selected country, selected
time interval and selected markets

from the central DB to the FST.

Select time interval ‘X’ date
to ‘Y’ date (cf. calendar)
Select users from the
previously selected MO/TSO

41

Day-ahead energy market
price data: a vector of 24-
hourly price values per
selected day and country
(€/MWh)

Select for day-ahead energy
market price data (cf.
checkbox)

Reserve market (e.g.
secondary or tertiary) price
data (up/down): a vector of
24-hourly price values per
selected day and country
(€/MW)

Select for reserve market
price data (cf. checkbox)

DLFM market price data: a
vector of 24-hourly price
values per selected day,
location area and type of
service (€/MWh + €/MVar)

Select for DLFM price data
(cf. checkbox)
Select DSO location areas
(insert location id, e.g. 1, 2, …
for a given TSO area)

Balancing market price
data: a vector of 24-hourly
price values per selected
day and country (€/MWh)

Select for balancing market
price data (cf. checkbox)

Network topology data (fill
in the parameters in the
GUI or fetch from the DB)

Select from the few pre-
saved network topologies or
fill in the required
parameters. Among other, it
includes data about existing
FlexAssets

The ATP-FST API will fetch the
required data based on ESP user’s
inputs to FST or from the pre-saved
network topologies in the central DB

Specifications both of
current storage units in
ESP’s portfolio (if any) and
potential ones (fill in
parameters in the GUI)

Some predefined should
already be stored in the
central DB

Fill in (for every storage unit
– the user can add several
units):
 power capacity (KW)
 energy capacity (KWh)
 inefficiency rate (%)
 initial/final SoE (%)
 location of storage unit

(location id)

The ATP-FST API will fetch the
required data based on ESP user’s
inputs to FST or from the pre-saved
ones in the central DB.

OPEX reduction target (%) Fill in the value The ATP-FST API will fetch the
required data based on ESP user’s
inputs to FST

Specifications of potential
FlexAssets (fill in
parameters in the GUI)

Some predefined should
already be stored in the
central DB

Fill in the values or choose
from the existing ones

The ATP-FST API will fetch the
required data based on ESP user’s
inputs to FST or from the pre-saved
ones in the central DB.

Constraints regarding
viable locations for
potential new FlexAssets
and budget constraints (if
any)

Fill in the forbidden locations
and maximum budget.

The ATP-FST API will fetch the
required data based on ESP user’s
inputs to FST or from the pre-saved
ones in the central DB.

42

Option to store data in the
central FLEXGRID database

Checkbox that can be either
checked or not.

The ATP-DB API will store the
algorithmic results in the central DB.

Various CAPEX
minimization scenarios

The ESP can select a past
scenario to view it in the FST
GUI.

The DB-ATP API will retrieve the data
from the central DB.

Output parameters ESP GUI in ATP Central FG database

Revenues (€) per
selected market and
scenario

A graph per selected market that depicts:
 Revenues (€) vs. market

Only the ESP user visualizes these results.

The FST-ATP API will fetch
the results from the FST to
ATP.

The ATP-DB API will store
the same results to the
central DB.

Siting (location in the
grid) and Sizing
(kW/kWh)

Show the minimum size of new FlexAssets
to install and in which DSO area.
Only the ESP user visualizes these results.

The FST-ATP API will fetch
the results from the FST to
ATP.

The ATP-DB API will store
the same results to the
central DB

CAPEX (€)

Show the required indicative investment
budget (euros) for the assumed timeframe
(e.g. 1 year) and RoI (in years).

Only the ESP user visualizes these results.

The FST-ATP API will fetch
the results from the FST to
ATP.

The ATP-DB API will store
the same results to the
central DB

According to the information above, a draft version of the ESP GUI sketches has been
developed by ETRA as well as the first version of the FST-ATP-DB APIs. Indicative screenshots
and more technical details can be found in D6.2.

4.2.3 UML diagrams for UCS 2.2

The following two figures depict the UML diagram for UCS 2.2. The first one is the data model
representation of the input parameters described in the table above regarding the ATP-FST
API. The second one is the data model representation of the output parameters described in
the table above regarding the FST-ATP API.

43

Figure 13: UML diagram for the ATP-FST API of UCS 2.2 (i.e. ESP user’s inputs filled in FST frontend

and posted to FST backend)

Figure 14: UML diagram for the ATP- FST API of UCS 2.2 (i.e. algorithmic results produced by FST

backend and visualized in FST frontend)

44

In this UCS, we consider a profit-seeker Energy Service Provider (ESP), who owns a set of
Battery Storage Units (BSUs) located at various nodes of a radial distribution network. In
order to maximize its profits, the ESP may participate in several energy/reserve markets and
dynamically optimize its bidding strategy. Without loss of generality and within FLEXGRID’s
context, we assume the ESP’s participation in four markets: 1) Day-Ahead Energy Market (DA-
EM) operated by the MO, 2) Day-Ahead Reserve Market (DA-RM) operated by the TSO, 3)
Day-Ahead Distribution-Level Flexibility Market (DA-DLFM) operated by a novel market entity
called Flexibility Market Operator (FMO), and 4) Balancing Market (BM) operated by the TSO.

The objective function of the ESP’s problem is to maximize its aggregated profits from the
four aforementioned markets. The novelty of the FLEXGRID’s mathematical model and
algorithmic approach is that the ESP co-optimizes its participation in various markets
instead of simply participating in each one of them individually in a sequential manner.
As far as the day-ahead wholesale energy market is concerned, the ESP decides the BSUs’
operation schedule by taking as input the nodal price, which corresponds to the node of
the transmission grid at which the distribution network is connected. Secondly, the ESP
makes profit by providing upward and downward reserves in the DA-RM. The
upward/downward reserve prices are obtained from the reserve market clearing process
and are the same throughout the transmission grid. Thirdly, the ESP participates in the DA-
DLFM by providing flexibility services to the DSO (i.e. active and reactive power (P-flexibility
and Q-flexibility) based on nodal prices within the distribution network). Finally, the ESP
participates in the near-real-time BM to balance its portfolio.

4.3.1 Proposed algorithm to integrate in FST

Technical details about the mathematical model, algorithmic solution and performance
evaluation results are provided in chapter 5 of D4.1 and chapter 5 of D4.2 (i.e. TRL 3). Within
WP6 context (i.e. TRL 5), our main goal is to demonstrate that the ESP user visualizes in ATP
its business profits by simultaneously participating in a different combination of the afore-
mentioned markets. Of course, profits will be more if the ESP participates simultaneously in
more markets.

We distinguish two main operation modes for the ESP’s GUI, namely:

 Online operation: The ESP user has the initiative. It takes market price forecasting
data for the four markets (i.e. DA-EM, DA-RM, DA-DLFM and BM) and calculates
four optimal energy/Flex offers to submit in ATP. These offers should also be made
visible for the FMO user (i.e. DLFM operator) and DSO user (i.e. FlexBuyer).

 Offline operation: The ESP user runs various “what-if” simulation scenarios via
running a stacked revenue maximization algorithm to identify how it can achieve
maximum expected profits. Only the ESP user will be able to visualize the results.

In order to integrate the proposed mathematical model and algorithm at TRL 5, we have
made the following assumptions:

 We assume a single-level optimization problem (i.e. ESP is price-taker, not price-
maker), instead of the more complex bi-level optimization model that has been
developed within WP4 context.

45

 We do not take into account the underlying network model. In other words, we
assume that all FlexOffers do not cause any network/grid problems.

 We assume that all FlexOffers will be accepted, so the FlexAssets (batteries) will be
accordingly scheduled.

 We may assume that historical market prices are the real ones (especially for the
offline operation). If we use the “market price forecasting” module developed by UCY
(see section 4.4 below), then we should first run the forecasting algorithm, which
takes as input a selected market price data series and produces as output the forecast
market price data series. Then, we assume that the latter data series will be the real
market prices at the time of delivery.

 We assume that the R-DLFM architecture is adopted, because this is the most
compatible with the existing EU regulatory framework.

4.3.2 Algorithmic inputs and outputs and ESP frontend ideas

The following tables summarize the input parameters for the algorithm to run in the FST
backend and output parameters for the results to be visualized in ESP’s GUI (i.e. FST frontend)
respectively.

Input parameters ESP GUI in ATP Central FG database

 Select MO/TSO data per country
(drop down menu with a few
countries, e.g. Germany, Norway,
Croatia)

The ATP-FST API will fetch
the required data based on
ESP user’s inputs to FST.
The DB-FST API will fetch
the required market price
data from the selected
country, selected time
interval and selected
markets from the central
DB to the FST.

 Select time interval ‘X’ date to ‘Y’
date (cf. calendar)

Day-ahead energy market price
data: a vector of 24-hourly price
values per selected day and
country (€/MWh)

Select for day-ahead energy
market price data (cf. checkbox16)

Reserve market (e.g. secondary
or tertiary) price data
(up/down): a vector of 24-hourly
price values per selected day
and country (€/MW)17

Select for reserve market price
data (cf. checkbox)

DLFM market price data: a
vector of 24-hourly price values
per selected day, location area
and type of service18 (€/MWh +
€/MVar)

Select for DLFM price data (cf.
checkbox)
Select DSO location areas (insert
location id, e.g. 1, 2, … for a given
TSO area)

16 If the ESP user checks the checkbox, then the data from the respected market will be retrieved from the
database. If not, then we assume a simulation scenario in which the ESP does not participate in a given market.
17 For reserve market, up and down regulation prices will be used.
18 We assume a few location areas (cf. “polygons” from NODES platform) with different LMPs. We also assume
2 types of services for the DN: i) d-LMPs for local congestion management problem and ii) q-LMPs for voltage
control problem. We assume that we use realistic DLFM prices based on NODES experience and international
literature. We also assume that the price of up/down regulation is the same.

46

Balancing market price data19: a
vector of 24-hourly price values
per selected day and country
(€/MWh)

Select for balancing market price
data (cf. checkbox)

Storage unit specifications (fill in
parameters in the GUI)

Fill in (for every storage unit – the
user can add several units):

- power capacity (KW)
- energy capacity (KWh)
- inefficiency rate (%)
- initial/final SoC (%)
- location of storage unit

(location id)

The ATP-FST API will fetch
the required data based on
ESP user’s inputs to FST.

Option to store data in the
central FLEXGRID database

Checkbox that can be either
checked or not!

The ATP-DB API will store
the algorithmic results in
the central DB.

Stacked revenue scenarios to
view in FST GUI (ATP)

The ESP can select a past scenario
to view it in the FST GUI.

The DB-ATP API will retrieve
the data from the central
DB.

Output parameters ESP GUI in ATP Central FG database

One optimized energy/Flex offer
curve per selected market --> 24-
hourly vector of (quantity, time) for
the given market price (i.e. ESP is a
pricer-taker)20

A graph per selected
market that depicts:
 Quantity offered vs.

time

The FMO and DSO users
should also be able to
visualize these curves on
their own GUIs.

The FST-ATP API will fetch
the results from the FST to
ATP.

The ATP-DB API will store the
same results to the central
DB (if option has been
selected by ESP user → see
above).

Revenues (€) per selected market and
scenario21

A graph per selected
market that depicts:
 Revenues (€) vs.

market

Only the ESP user
visualizes these results.

The FST-ATP API will fetch
the results from the FST to
ATP.

The ATP-DB API will store the
same results to the central
DB.
(if option has been selected
by ESP user → see above).

The data model of UCS 2.3 is currently the most mature one and can be found in FLEXGRID
GitHub area22. For more convenience and easier use of FLEXGRID services after the end of

19 We may also assume that the price of up/down regulation is the same for the balancing market.
20 We will have 6 curves in the same graph, namely: i) day-ahead energy (positive & negative quantity values),

ii) reserve (one curve for up-regulation quantity and one curve for down/regulation quantity), iii) DLFM (one
curve for active (P) power quantity and one curve for reactive power (Q) quantity), iv) Balancing energy (positive
& negative power quantity values).
21 In the x axis, we will have 4 markets (one bar per market showing the revenues in the y axis).
22 https://github.com/FlexGrid/atp_service

https://github.com/FlexGrid/atp_service

47

the project’s lifetime, we provide the FLEXGRID API data models in the form of swagger (and
.yaml) files. For example, the next figure provides an indicative screenshot of this service.

Figure 15: Example of swagger file for UCS 2.3 API data model

According to the information above, a draft version of the ESP GUI sketches has been
developed by ETRA as well as the first version of the FST-ATP-DB APIs. Indicative screenshots
and more technical details can be found in D6.2. It should also be noted that UCS 2.3
algorithm will be fully integrated in FLEXGRID ATP by M21 and a respective live
demonstration will take place during the Period 1 review meeting on 22/06/2021.

4.3.3 UML diagrams for UCS 2.3

The following two figures depict the UML diagram for UCS 2.3. The first one is the data model
representation of the input parameters described in the table above regarding the ATP-FST
API. The second one is the data model representation of the output parameters described in
the table above regarding the FST-ATP API.

48

Figure 16: UML diagram for the ATP-FST API of UCS 2.3 (i.e. ESP user’s inputs filled in FST frontend

and posted to FST backend)

Figure 17: UML diagram for the FST-ATP API of UCS 2.3 (i.e. algorithmic results produced by FST

backend and visualized in FST frontend)

49

In this UCS, we deal with two forecasting problems, namely: i) PV generation forecasting, and
ii) market price forecasting. In the following two subsections, we provide relevant
information for these two problems.

4.4.1 PV generation forecasting

4.4.1.1 Proposed algorithm to integrate in FST

Advanced generation forecasting tool should be developed that will provide dynamic
estimation of RES production curves (RPCs) based on historical and other data for specific
geographical locations. These forecasts will help in hedging the ESP’s risks and allow the
sustainable commercial exploitation of the energy produced by RES.

A set of cutting-edge machine learning models (Bayesian Regularised Neural Network
(BRNN)) and methods are proposed for the PV generation forecasting problem. BRNN
utilises the Bayes-Newton regularisation to minimise the weights of the neural network
and consequently minimise the error of the model. BRNN are very efficient in terms of
computational time and processing, while the number of input parameters (or else
features) that are required to adapt to the behaviour of a specific PV plant or for a larger
aggregation area, are minimum.

● Online operation: The PV generation forecasting tool requires as input parameters

numerical weather prediction (NWP) and sun angles (elevation and azimuth) data

to calculate the day-ahead PV power generation forecast. The models will be

trained based on historical NWP data and power measurements.

● Offline operation: The forecasting models will be trained with historical

parameters only (no live training will be performed), while the PV generation

forecasting output will be based only on historical parameters.

Assumptions:

● Historical data (NWP and power measurements) will be provided for at least 6-8

months (fewer months could also be utilised but with decreased accuracy).

● Aggregated data will be provided for specific areas to provide aggregated DA PV

production forecasting. If aggregated data is not available, the UCY will aggregate the

data from specific points.

● The NWP data will be provided to the UCY in order to provide day-ahead PV

generation forecast.

4.4.1.2 Algorithmic inputs and outputs and ESP frontend ideas

The following tables summarize the input parameters for the algorithm to run in the FST
backend and output parameters for the results to be visualized in ESP’s GUI (i.e. FST frontend)
respectively.

Input parameters ESP GUI in ATP Central FG database

 Select data per country (drop
down menu with a few countries,

The ATP-FST API will fetch
the required data based on

50

e.g. Cyprus, Germany, Norway,
Croatia).

ESP user’s inputs to FST.
The DB-FST API will fetch
the required data from the
selected country and
selected time interval from
the central DB to the FST.

 Select time interval ‘X’ date to ‘Y’
date (cf. calendar) – [YYYY-MM-
DD hh:mm:ss].

Nominal installed capacity of the
PV system [W].

Fill in the nominal installed
capacity of the PV system in W.

PV system coordinates (latitude,
longitude).

Fill in the PV system coordinates in
decimal degrees format:

● Latitude (e.g. 35.21474)

● Longitude (e.g. 33.25541).

Historical measured Pac power
data [W].

Download button that includes
the template (“download.csv”
file) of the csv file that needs to be
uploaded.

Upload button to upload the
historical data in CSV file:
Timestamp (YYYY-MM-DD
hh:mm:ss), Historical NWP - GHI
(𝑊/𝑚2), Historical NWP - Tamb
(˚C), Historical measured - Pac (W).

Historical NWP data:
● Historical forecasted

GHI or GPOA [𝑊/𝑚2]

● Historical forecasted

Tamb [˚C].

Day-ahead (48 points – half-hour
resolution) NWP data per PV
system location area:

● GHI or GPOA [𝑊/𝑚2]

● Tamb [˚C].

Download button that includes
the template (“download.csv”
file) of the csv file that needs to be
uploaded.

Upload button to upload the NWP
data per PV system location are in
CSV file: Timestamp (YYYY-MM-
DD hh:mm:ss), NWP - GHI (𝑊/
𝑚2), NWP - Tamb (˚C).

Output parameters ESP GUI in ATP Central FG database

Day-ahead PV power generation
forecast [W] - 48 points (half-
hour resolution)

A Line graph that depicts:
● PV power generation forecast

[W] vs Timestamp [YYYY-MM-

DD hh:mm:ss]

● The FST-ATP API will

fetch the results from

the FST to ATP.

● The ATP-DB API will

store the results to the

central DB.

4.4.2 Market price forecasting

4.4.2.1 Proposed algorithm to integrate in FST

Technical details concerning the mathematical model, algorithmic solution and performance
evaluation results are provided in Chapter 2 of D4.1 and Chapter 2 of D4.2. The goal of the
algorithm is to create a reliable forecasting tool that will be used to forecast the Day-Ahead
24 electricity values and their corresponding confidence intervals using historical data from

51

specific areas and forecasts of other variables such as weather conditions and power
demand. This tool will help to address the risks and thereby will provide insights to ESP’s
bidding, scheduling and planning processes (cf. UCS 2.1-2.3) in view of increasing its profits.

The algorithm will be based on the Extreme Learning Machine (ELM) method. This
algorithm is a single layer feed-forward network (SLFN) having the important feature of
the short learning period. The algorithm would be able to run both online and offline as
described below:

 Online operation: The algorithm requires historical data, through which it will be

trained. Historical data from the day-ahead energy market or any other auction-

based energy market (e.g. balancing market) as well as forecasts of other related

variables pertaining to weather conditions and energy demand will be used as

inputs to the algorithm. As output, the day-ahead forecasted 24 values of electricity

along with the corresponding confidence intervals will be provided.

 Offline operation: The ESP can use the available data as described above to carry

out simulations of different scenarios in order to assess their validity with respect

to several forecast accuracy KPIs.

Assumptions:

 The data of 72 hourly values are entered as input to the algorithm.

 Available data will be used, depending on the market in which the ESP would like to

get the forecast prices.

4.4.2.2 Algorithmic inputs and outputs and ESP/aggregator frontend ideas

The following tables summarize the input parameters for the market price forecasting
algorithm to run in the FST backend and output parameters for the results to be visualized in
ESP’s GUI (i.e. FST frontend) respectively.

Input parameters ESP GUI in ATP Central FG database

 Select MO/TSO data per country
(drop down menu with a few
countries, e.g. Germany, Norway,
Croatia)

The ATP-FST API will fetch
the required data based on

ESP user’s inputs to FST.
The DB-FST API will fetch
the required market price

data from the selected
country, selected time
interval and selected

markets from the central
DB to the FST.

 Select ‘X’ date for forecast (cf.
calendar) – [dd/MM/yyyy]

Day-ahead energy market price
data: a vector of 72-hourly price
values per selected day and
country (€/MWh)

Select for day-ahead energy
market price data

Selection of data from any
auction-based market with
uniform pricing: a vector of 72-
hourly price values per selected
day and country (€/MWh)

Select for corresponding energy
market price data

Day ahead weather forecast

52

Output parameters ESP GUI in ATP Central FG database

One curve with day-ahead 24-
hourly vector for the given
timeframe

A graph that depicts:
- 24 day-ahead hourly prices vs.

time (dd/MM/yyyy,
HH:mm:ss)

The FST-ATP API will fetch
the results from the FST to
ATP.

The ATP-DB API will store
the same results to the
central DB.

Confidence Intervals and Market
Forecast Accuracy Level

4.4.3 UML diagrams for UCS 4.4

The following four figures depict the UML diagrams for UCS 4.4:

 The first one is the data model representation of the input parameters related with
the PV generation forecasting described in the table above regarding the ATP-FST API.

 The second one is the data model representation of the output parameters related
with the PV generation forecasting described in the table above regarding the FST-
ATP API.

 The third one is the data model representation of the input parameters related with
the market price forecasting described in the table above regarding the ATP-FST API.

 The fourth one is the data model representation of the output parameters related
with the market price forecasting described in the table above regarding the FST-ATP
API.

Figure 18: UML diagram for the ATP-FST API of UCS 4.4 for PV generation forecast (i.e. ESP user’s

inputs filled in FST frontend and posted to FST backend)

53

Figure 19: UML diagram for the FST-ATP API of UCS 4.4 for PV generation forecast (i.e. algorithmic

results produced by FST backend and visualized in FST frontend)

Figure 20: UML diagram for the ATP-FST API of UCS 4.4 for market price forecasting (i.e. ESP user’s

inputs filled in FST frontend and posted to FST backend)

Figure 21: UML diagram for the FST-ATP API of UCS 4.4 for market price forecasting (i.e.

algorithmic results produced by FST backend and visualized in FST frontend)

As already discussed, we will integrate four UCS in the FlexSuppliers’ Toolkit (FST). The S/W
architecture follows a modular-by-design approach, which allows the different S/W modules
to be developed on a standalone basis by the various partners and communicate with each
other via well-defined and fine-grained APIs. The following figure describes in five main steps
the process that will be followed23. There are three main S/W components that will be
developed, namely:

 ATP GUI or else FST frontend: this will be developed by ETRA.

 FST backend: this will be developed collaboratively by UNIZG (cf. UCS 2.1 & 2.2), ICCS
(UCS 2.3) and UCY (UCS 4.4).

23 More technical details about the steps depicted in Figure 22 are provided in FLEXGRID D6.2.

54

 FLEXGRID Central Database: this will be developed by ETRA, while real-life input data
will be provided by each one of the three research partners.

First of all, the ESP user will login the FLEXGRID ATP, will be authenticated through a single
sign-on process and then will be redirected to the main ESP’s GUI. Via the FST application,
the ESP user will be able to visualize, configure and manage its FlexAssets. Moreover, the ESP
user will be able to run four main algorithms in order to be able to make optimal scheduling
(cf. UCS 2.1), planning (cf. UCS 2.2), bidding (cf. UCS 2.3) and forecasting decisions (cf. UCS
4.4).

For each one of the four algorithms, there will be a tab in the FST frontend. Once the ESP
user clicks on one tab, s/he will be able to configure/customize/fill in the input parameters
that are needed for each algorithm to be able to run. Once the ESP user clicks on the “Run
algorithm” button, step 1 process will be followed. More specifically, the API client that
resides at the FST frontend will automatically gather all input parameters and will send them
to the API server that resides at the FST backend.

After the FST backend receives the input parameters, the next step is to request for the
required input data from the FLEXGRID central database (DB). More specifically, an API client
that resides at FST backend request for input data from an API server residing at the central
DB. In step 3, the input data is retrieved, and now the algorithm can be executed.

Once the algorithm produces the results, these output parameters will be automatically
gathered by the FST-ATP API and will be sent to the FST frontend so that the ESP user can
visualize the results in a comprehensive and user-friendly manner. The final step (i.e. step 5)
is for the ESP user to understand the results and if s/he is interested in further elaborating
them, then s/he can optionally select to store them in the central DB in order to be able to
retrieve, visualize and possibly compare them with other results in the future.

Figure 22: Sequence diagram for communication among ATP frontend, FST backend and central

database

55

5 Data model for the aggregator user’s
frontend and AFAT backend

In this UCS, we consider a commercial and independent aggregator entity, whose objective
is to increase its profits from selling various flexibility services by optimally representing and
managing his aggregated flexibility portfolio consisting of DERs of end users. End users are
motivated to participate in the aggregator’s portfolio with monetary incentives, which are
established through appropriate FlexContracts.

The aggregator’s objective is to maximize its profits from participation in the flexibility
market. This translates to maximization of the revenues and minimization of the
associated costs. The revenues of the aggregator increase with positive responses to
FlexRequests. The associated costs can be divided into two categories. The first are end-
user compensations for provision of flexibility, defined in FlexContracts. The second
involves potential imbalance costs, meaning the financial effect of activating flexibility and
deviating from the baseline (scheduled energy profile of the flexibility assets). Presence of
imbalance costs depends on the interaction of the flexibility market with other existing
energy markets.

5.1.1 Proposed algorithm to integrate in AFAT

The more complex problem formulation and technical details of mathematical/system
model, algorithmic solution, simulation setup performance evaluation results for reaching
the objective of the aggregator, when managing a FlexRequest-Activation are analyzed in
chapter 3 of D3.1 and chapter 2 of D3.2 (TRL 3). The goal of the implementation of UCS 4.1
in WP6 (TRL 5) is the demonstration and visualization of the portfolio of the aggregator user
and the profits (revenues-costs) of effectively responding to FlexRequests.

The independent aggregator user visualizes in AFAT the profit of accepting a FlexRequest
and the “consequences”/remaining flexibility of its portfolio after the positive response.
The goal is to deviate from the baseline only by the amount of energy of the FlexRequest,
which was accepted by the aggregator. This requires appropriate selection of FlexAssets to
activate/dispatch based on cost and effects on future time slots.

Two modes of operation are considered:

● Online operation: A new FlexRequest-Dispatch is published in real-time and the
aggregator has to dynamically decide the updated dispatch per flexibility asset /
end user. For a sequence of FlexRequests, there are iterative runs of the algorithm.

● Offline operation: The aggregator performs “what-if” simulation scenarios
(different configurations of FlexContracts (e.g. cost, availability),
expansion/modification of portfolio, different sequence of FlexRequests) to
determine strategies for optimal response to future FlexRequests, creating
FlexContracts and expanding its portfolio.

56

In order to integrate the proposed mathematical model and algorithm at TRL 5, the following
assumptions are made:

 The flexibility request is a FlexRequest-Dispatch/Activation, where a positive
response from the aggregator requires the dispatch/activation of flexibility assets.

 The underlying network model is not taken into account. The dispatch/activation of
flexibility assets does not cause network/grid problems.

 Potential imbalance costs, if needed, will be based on available historical prices of
markets (intraday market or balancing market).

 The minimum Market Time Unit (MTU) is 15 minutes. This stands for energy
requested by FlexRequests and flexibility information of the FlexAssets.

 We assume simple types of FlexContracts, which allow the majority of information
concerning the cost of activation of each FlexAsset for each MTU to be known a priori.

This algorithm, with some small modifications, can be used for all instances of x-DLFM
architectures, as the focus is the interaction between the aggregator and its customers/end-
users (i.e. B2C) and not on the interaction of the aggregator with the energy or flexibility
market (i.e. B2B).

5.1.2 Algorithmic inputs and outputs and aggregator frontend ideas

The required inputs for the UCS 4.1 algorithm to run are:

 Information on the aggregator’s portfolio of FlexAssets

 Reserved flexibility obligations of the aggregator

 FlexRequest-Dispatch information

 Location and Date

 Market data

The outputs of the algorithm are the following:

● Response to FlexRequest (Accept/Reject)
● Dispatched/Activated FlexAssets for fulfilling the FlexRequest
● Updated Table of aggregator’s portfolio
● Aggregator and end-user profits (revenue, costs)

In the following tables, the input and output parameters of the algorithm running in the AFAT
backend and the visualization of the information and results in the aggregator’s GUI (AFAT
frontend) are summarized.

Input parameters Aggregator GUI in ATP Central FG database

 Select location and date (drop-
down menu for bidding zones &
calendar)

Table of FlexAssets with
information for each MTU:
- Baseline Consumption
- Actual Consumption
- Availability
- Amount of Flexibility
- Cost

Select Aggregator’s portfolio
(drop-down menu with default
scenarios and customized
scenarios saved by the user)

Portfolio – Visualization of Table
of FlexAssets

The ATP-DB API will fetch
the required data
(depending on the user’s
input) from the central DB

57

- Grid Location
- End-user

The ATP-AFAT API will fetch
the required data based on
user’s inputs to AFAT

 Options to modify Aggregator’s
portfolio
- Remove FlexAsset
- Add FlexAsset
- Modify parameters of FlexAsset

Store scenario of Aggregator’s
Portfolio in the DB (separate
option)

The ATP-DB API will store
the aggregator’s portfolio
to the central DB

The ATP-AFAT API will fetch
the required data based on
user’s inputs to AFAT

 Select scenario of obligations due
to FlexRequests-Reserve (drop-
down menu with default scenarios
and scenarios saved by the user)

 Option to modify reservation of
flexibility
- Remove reservation
- Add reservation
- Modify reservation

Store scenario of reserve
obligations in the DB (separate
option)

The ATP-DB API will store
the scenario of flexibility
reservation to the central
DB

The ATP-AFAT API will fetch
the required data based on
user’s inputs to AFAT

Market data for the appropriate
MTUs and location (€/MWh)

Include market data for imbalance
cost (checkbox) 24

The ATP-DB API should
fetch the appropriate
market data (if possible)
depending on the user’s
input

FlexRequest-Dispatch
- Type of Energy
- Amount of Energy
- MTU
- Price
- Location
etc.

Manage FlexRequest click button
to run the algorithm with the
current settings The ATP-AFAT API will fetch

the required data based on
user’s inputs to AFAT

Option to save current state to
the DB

Save option The ATP-DB API will store
the appropriate data in the
central DB.

Output parameters Aggregator GUI in ATP Central FG database

Response to FlexRequest
(Accept/Reject)

The response to the FlexRequest
is shown. The rest of the outputs
are shown only if the response to
the FlexRequest is “Accept”

The AFAT-ATP API will fetch
the results from the AFAT to
ATP.

24 If the user selects the checkbox, the appropriate data will be retrieved from the DB. The imbalance costs
will be estimated on intraday market data (adjust scheduled curve) or balancing market (penalty)

58

Vector of dispatch decisions per
FlexAsset for relevant MTUs

A graph depicting the
use/activation of each
FlexAsset/end-user

The ATP-DB API will store
the same results to the
central DB.

Updated Table of FlexAssets Updated Table of FlexAssets

Deviation of energy curve of
FlexAssets cf. Baseline / Actual
consumption

A graph depicting the deviation of
the real energy curve and the
baseline one. This should also be
visualized per FlexAsset/end-user.

Aggregator’s profit
(revenue/cost) per MTU

A graph depicting the profit,
revenue and cost of aggregator
for each MTU.

According to the information above, a draft version of the Aggregator GUI sketches has been
developed by ETRA as well as the first version of the AFAT-ATP-DB APIs. Indicative
screenshots and more technical details can be found in D6.2.

5.1.3 UML diagrams

Figure 23: UML diagram for the ATP-AFAT API of UCS 4.1 (i.e. Aggregator user’s inputs filled in

AFAT frontend and posted to AFAT backend)

59

Figure 24: UML diagram for the AFAT-ATP API of UCS 4.1 (i.e. algorithmic results produced by

AFAT backend and visualized in AFAT frontend)

The two figures above depict the UML diagrams for UCS 4.1. The first one is the data model
representation of the input parameters described in the table above regarding the ATP-AFAT
API. The second one is the data model representation of the output parameters described in
the table above regarding the AFAT-ATP API.

For a given timeframe (e.g. one or more timeslots ahead), the aggregator runs an automated
flexibility aggregation algorithm to determine/create a FlexOffer that best represents the
current status of its portfolio and submits it to the FLEXGRID ATP. This FlexOffer may be used
either in the: i) TSO’s balancing market (cf. “no-DLFM” architecture), or ii) proposed DLFM
market operated by the FMO to solve DN-level problems.

Within WP6, the goal is to demonstrate that the aggregator user can visualize a FlexOffer and
then submit (post) it in FLEXGRID ATP at a specific time instance regarding its participation in
the DLFM market. Then, the FMO user will also be able to visualize this FlexOffer as well as

60

the DSO (i.e. FlexBuyer). If this FlexOffer is not accepted in DLFM, it may be forwarded to the
TSO’s balancing market25.

5.2.1 Proposed algorithm to integrate in AFAT

Technical details about the mathematical model, algorithmic solution and performance
evaluation results are provided in chapter 4 of D3.1 and chapter 3 of D3.2 (i.e. TRL 3).

In this UCS, two modes of operation for the aggregator’s GUI are considered, namely:

 Online operation is when the aggregator wants to create a FlexOffer in real-time
(in order to submit it in the ATP) based on the current availability of FlexAssets (cf.
FlexContract per FlexAsset that denotes the available reserve capacity).

 Offline operation is when the aggregator wants to run “what-if” scenarios to see
whether it is more beneficial to participate in the existing TN-level balancing market
or DN-level balancing market (i.e. DLFM)26.

In order to integrate the proposed mathematical model and algorithm at TRL 5, we have
made the following assumptions:

 Single-level optimization problem (i.e. aggregator is price-taker, not price-maker).

 We do not take into account the underlying network model. We assume that all
FlexOffers do not cause network/grid problems.

 We do not take into consideration time coupling constraints, complex block offers,
and other types of block offer constraints.

 We assume that the aggregator gets paid for: i) the availability it offers to the
TSO/DSO (€/MW), and ii) the energy that is activated at the delivery time (€/MWh).

Regarding the input to the FlexOffer creation algorithm, every FlexAsset sends to the
aggregator for each timeslot and each DN location id: i) one individual FlexOffer curve for up-
reserve (quantity vs. price), and ii) one individual FlexOffer for down-reserve (quantity vs.
price). As of the output of the algorithm, the aggregator sends to FLEXGRID ATP for each
timeslot and each DN location id: i) one aggregated FlexOffer curve for up-reserve (quantity
vs. price), and ii) one aggregated FlexOffer for down-reserve (quantity vs. price).

5.2.2 Algorithmic inputs and outputs and aggregator frontend ideas

The following tables summarize the input parameters for the algorithm to run in the AFAT
backend and output parameters for the results to be visualized in aggregator’s GUI (i.e. AFAT
frontend) respectively.

Input parameters Aggregator GUI in ATP Central FG database

Portfolio id (e.g.
number 1, 2, 3)

Select aggregator’s portfolio (drop down
menu with a few portfolios, e.g. BADENOVA

The ATP-AFAT API will
fetch the required data

25 ETRA will develop this API to emulate this operation. ETRA will also create a tab to demonstrate a “TSO user
view” in which the TSO user can visualize this FlexOffer that has been forwarded (cf. UCS 1.4).
26 UCS 2.3 deals with this problem in a similar way for the ESP user, so we can use the UCS 2.3 algorithm for the
offline mode of operation, too.

61

data, Cyprus retailer’s data, Greek retailer’s
data27)

based on aggregator
user’s inputs to AFAT.
Then, the DB-AFAT API
will fetch the required
historical data from the
central DB to the AFAT.

Set of FlexAsset ids Select a set of FlexAssets from a list (i.e. scroll
down and manually select the FlexAssets).
Default option is to have a checkbox to select
all FlexAssets for a given portfolio selected
above.

Start date time + end
date time

Select time interval ‘X’ date to ‘Y’ date (cf.
calendar)

Time granularity id Select from a drop-down menu (15-minute,
1-hour, 1-day)

Location id (DSO area) List of DSO areas for the user to select
(default option is that the root/whole DSO
area is selected, where the entire FlexAsset
portfolio can be used)28

Individual FlexOffer
from each individual
FlexAsset29

- one FlexOffer curve for up-reserve
(quantity vs. time)30

- one FlexOffer for down-reserve
(quantity vs. time)

- location id
No input is required by the aggregator user.
We will have one static FlexOffer per
FlexAsset stored in the central DB.

Option to store data in
the central FLEXGRID
database

Checkbox that can be either checked or not.

Past scenario results to
view in AFAT GUI (ATP)

The aggregator user can select a past scenario
to view it in the AFAT GUI.

Output parameters Aggregator GUI in ATP Central FG database

One FlexOffer curve per product
(i.e. up-reserve and down-
reserve)

A graph per product that depicts:
- Quantity offered vs. time (at a

given price)
- Quantity offered vs. price (at a

given timeslot)

The FMO and DSO users should
also be able to visualize these
FlexOffer curves on their own
GUIs.

The AFAT-ATP API will fetch
the results from the AFAT to
ATP.

The ATP-DB API may store
the same results to the
central DB.

27 We assume that each aggregator has already registered its own FlexAssets (i.e. portfolio) in the FLEXGRID
ATP. ETRA will elaborate on the existing NODES API (https://nodes-
demo.azurewebsites.net/swagger/index.html#/).
28 Following up the NODES paradigm, we can have an hierarchical structure. For example: i) id 1 for the entire
DSO area (default area), ii) id 1.1 or 1.2 or id 1.3 for a DSO sub-area, iii) id 1.1.1 for a specific LV-feeder
experiencing network problems at a distribution network edge.
29 If we want to make it more complex (assume more complex FlexContract), we may assume that each
individual FlexAsset sends for each timeslot several quantity vs. price (tuples).
30 For example, if the aggregator user selects a time interval of one day (cf. day-ahead) and 1-hour time
granularity, the individual FlexOffer will be a vector of 24-hourly quantities offered vs. time (for a given price).

https://nodes-demo.azurewebsites.net/swagger/index.html#/
https://nodes-demo.azurewebsites.net/swagger/index.html#/

62

Potential revenues (€) for the
selected scenario (if FlexOffer is
accepted)

A graph per selected market (TN-
or DN-level reserve market) that
depicts:
- Expected revenues (€) vs. time

Only the aggregator user can
visualize these results.

The AFAT-ATP API will fetch
the results from the AFAT to
ATP.

The ATP-DB API may store
the same results to the
central DB.

5.2.3 UML diagrams

The following two figures depict the UML diagram for UCS 4.3. The first one is the data model
representation of the input parameters described in the table above regarding the ATP-AFAT
API. The second one is the data model representation of the output parameters described in
the table above regarding the AFAT-ATP API.

Figure 25: UML diagram for the ATP-AFAT API of UCS 4.3 (i.e. Aggregator user’s inputs filled in

AFAT frontend and posted to AFAT backend)

Figure 26: UML diagram for the AFAT-ATP API of UCS 4.3 (i.e. algorithmic results produced by

AFAT backend and visualized in AFAT frontend)

63

In this UCS, we assume that a DSO has made a FlexRequest (i.e. quantity vs. price curve for
each given timeslot). The aggregator user wants to run various “what-if” simulation
scenarios (i.e. offline operation) to determine better ways (via retail pricing schemes) to
operate a novel B2C flexibility market, in which the end energy prosumers compete with
each other. In other words, the aggregator runs a retail pricing algorithm to test and
evaluate the impact that new FlexContracts (with its end users) would have on several KPIs
such as:

 aggregator’s revenues,

 aggregated end users’ welfare,

 quantity of flexibility offered to the system,

 individual end user’s welfare.

5.3.1 Proposed algorithm to integrate in AFAT

Technical details about the mathematical model, algorithmic solution and performance
evaluation results are provided in chapter 5 of D3.1 and chapter 4 of D3.2 (i.e. TRL 3).

In this UCS, only one operation mode for the aggregator’s GUI is considered, namely:

 Offline operation: The aggregator user runs various “what-if” simulation scenarios
via running an advanced retail pricing algorithm (Behavioral Real Time Pricing – B-
RTP) to identify how it can recommend a new (more beneficial) FlexContract to a
set of end energy prosumers. Only the aggregator user will be able to visualize the
results.

In order to integrate the proposed mathematical model and algorithm at TRL 5, we have
made the following assumptions:

 We assume that the end energy prosumers dispose the required ICT infrastructure
and equipment to automatically create individual FlexOffers and respond to the
iterative pricing signals sent by the aggregator.

 We assume that the aggregator has already registered all its individual FlexAssets in
the ATP (like it is done in the NODES platform) with all the required FlexAsset
specifications.

 We do not take into account the underlying network model. We assume that all
FlexOffers do not cause any network/grid problems, which is a rational assumption
given the fact that a DSO has already made a FlexRequest and this is an input to our
algorithm.

 We follow a decentralized optimization approach (in contrary with the UCS 4.1, in
which a centralized optimization is adopted).

 We assume historical energy consumption and production data. So, we run
exhaustive offline simulation scenarios to identify potential energy prosumers, who
are eager to become more flexible (i.e. select a more beneficial FlexContract) in order
to earn more financial rewards in the future.

 We assume that the DSO has made the FlexRequest based on existing
load/generation forecast data that it already acquires for its distribution network.

64

5.3.2 Algorithmic inputs and outputs and aggregator frontend ideas

The following tables summarize the input parameters for the algorithm to run in the AFAT
backend and output parameters for the results to be visualized in aggregator’s GUI (i.e. AFAT
frontend) respectively.

Input parameters Aggregator GUI in ATP Central FG database

Portfolio id (e.g. number 1, 2, 3) Select aggregator’s portfolio (drop
down menu with a few portfolios,
e.g. BADENOVA data, Cyprus
retailer’s data, Greek retailer’s
data)31

The ATP-AFAT API will fetch
the required data based on
aggregator user’s inputs to
AFAT backend (i.e.
algorithm). The DB-AFAT
API will fetch the required
historical data from the
central DB to the AFAT
backend (i.e. algorithm).

Set of prosumer ids Select a set of end energy
prosumers from a list (i.e. scroll
down and manually select the end
prosumers)32

Start date time + end date time Select time interval ‘X’ date to ‘Y’
date (cf. calendar)

Time granularity id Select from a drop-down menu:
15-minute, 1-hour, 1-day

Timeframe id Select from a drop-down menu:
(default, Mon-Fri ONLY, Weekend
ONLY, night hours ONLY, Peak
hours ONLY)

FlexRequest: a vector of
price/quantity tuples for each
15-min timeslot

Select a FlexRequest from a drop-
down menu 33 or retrieve the
FlexRequest that is manually
created by the DSO user in ATP34

FlexOffer: a vector of
price/quantity tuples for each 1-
hour timeslot per FlexAsset

No input is required by the
aggregator user. We will have one
static Flexoffer per end user
stored in the central DB35

Storage unit specifications (fill
in parameters in the GUI)

Fill in (for every storage unit – the
user can add several units):

- power capacity (KW)
- energy capacity (KWh)
- inefficiency rate (%)
- initial/final SoC (%)
- location id

Curtailable load specifications
(fill in parameters in the GUI)

Fill in (for every load unit – the
user can add several units):

- power consumption (KW)

31 15-minute granularity of energy consumption and RES data is available
32 All energy consumption and production datasets are stored in the central DB.
33 There is a set of indicative FlexRequests, which are stored in the central FG database.
34 Once the DSO user creates a FlexRequest in the respective DSO GUI (cf. UCS 1.1-1.3), then this FlexRequest is
automatically posted in the aggregator/ESP user’s GUI.
35 We do not need to have a sketch for this in the GUI. Once the aggregator user selects the set of prosumer ids
(see above), then the algorithm will retrieve the static FlexOffers (one per end user) from the central DB. This
static FlexOffer is a mathematical interpretation of each end user’s FlexContract.

65

FlexContract id Select manually 1 or more retail
pricing algorithms from a drop-
down menu to be compared:

- Fixed pricing,
- Real-Time Pricing (γ=0),
- Behavioral RTP (γ=1),
- Behavioral RTP (γ=0.5),
- Behavioral RTP (γ=1.5)

Gamma ‘γ’ parameter? Fill in a number in a required field.
This ‘γ’ value can be 0<γ<2.36

Profit margin parameter ‘p’
(optional)

Fill in a number in a required
field37

Option to store data in the
central FLEXGRID database

Checkbox that can be either
checked or not.

The ATP-DB will store the
algorithmic results in the
central DB.

Scenario results to view in AFAT
GUI (ATP)

The aggregator user can select a
past scenario to view it in the
AFAT GUI.

The DB-ATP will retrieve the
data from the central DB.

Output parameters Aggregator GUI in ATP Central FG database

Flexibility revenues A graph per selected pricing
scheme that depicts:
- flexibility revenues vs. ‘γ’?

The AFAT-ATP API will fetch
the results from the AFAT to
ATP.

The ATP-DB API will store
the same results to the
central DB (if the related
checkbox has been
checked).

Aggregated end Users’ Welfare
(AUW)

A graph per selected pricing
scheme that depicts:
- aggregated users’ welfare vs.

‘γ’?

Quantity of aggregated flexibility
offered

A graph per selected pricing
scheme that depicts:
- quantity of flexibility offered

vs. ‘γ’?

Welfare per end user (optional) A histogram per selected pricing
scheme that depicts:
- ‘X’ axis: set of selected end

users
- ‘Y’ axis: UW with B-RTP (γ)/

UW with RTP (γ=0)

36 When γ=0, we have the RTP model in which all end users get the same reward in €/flexibility unit, even though
some of the them did not contribute anything in the FlexRequest. When γ=1, we have a fully personalized RTP
scheme, in which the flexible end users get rewarded according to each one’s contribution, while inflexible end
users do not get any reward. When γ>1, then the inflexible end users get penalized, because they did not
contribute anything in a case of a critical FlexRequest.
37 This parameter can be any number between 0 and 1 and represents the percentage of flexibility revenues
that will get the aggregator as profit. The residual percentage of aggregator’s revenues will be shared among
end users. In the extreme case, in which p=0, all flexibility revenues are shared among the end users.

66

5.2.3 UML diagrams

The following two figures depict the UML diagram for UCS 4.2. The first one is the data model
representation of the input parameters described in the table above regarding the ATP-AFAT
API. The second one is the data model representation of the output parameters described in
the table above regarding the AFAT-ATP API.

Figure 27: UML diagram for the ATP-AFAT API of UCS 4.2 (i.e. Aggregator user’s inputs filled in

AFAT frontend and posted to AFAT backend)

Figure 28: UML diagram for the AFAT-ATP API of UCS 4.2 (i.e. algorithmic results produced by

AFAT backend and visualized in AFAT frontend)

67

As already discussed, we will integrate three UCS in the Automated Flexibility Aggregation
Toolkit (AFAT). The S/W architecture follows a modular-by-design approach, which allows
the different S/W modules to be developed on a standalone basis by the two involved
partners (i.e. UCY, ICCS) and communicate with each other via well-defined and fine-grained
APIs. The following figure describes in five main steps the process that will be followed38.
There are three main S/W components that will be developed, namely:

 ATP GUI or else AFAT frontend: this will be developed by ETRA.

 AFAT backend: this will be developed collaboratively by UCY (cf. UCS 4.1) and ICCS
(cf. UCS 4.2 and 4.3).

 FLEXGRID Central Database: this will be developed by ETRA, while real-life input data
will be provided by each one of the two research partners in collaboration with
industrial partners, too.

First of all, the aggregator user will login the FLEXGRID ATP, will be authenticated through a
single sign-on process and then will be redirected to the main aggregator’s GUI. Via the AFAT
application, the aggregator user will be able to visualize, configure and manage its end user
portfolio. Moreover, the aggregator user will be able to run three main algorithms in order
to be able to make optimally manage a FlexRequest (cf. UCS 4.1), create a FlexOffer (cf. UCS
4.2) and manage a novel B2C flexibility market (cf. UCS 4.3).

For each one of the three algorithms, there will be a tab in the AFAT frontend. Once the
aggregator user clicks on one tab, s/he will be able to configure/customize/fill in the input
parameters that are needed for each algorithm to be able to run. Once the aggregator user
clicks on the “Run algorithm” button, step 1 process will be followed. More specifically, the
API client that resides at the AFAT frontend will automatically gather all input parameters
and will send them to the API server that resides at the AFAT backend.

After the AFAT backend receives the input parameters, the next step is to request for the
required input data from the FLEXGRID central database (DB). More specifically, an API client
that resides at AFAT backend request for input data from an API server residing at the central
DB. In step 3, the input data is retrieved, and now the algorithm can be executed.

Once the algorithm produces the results, these output parameters will be automatically
gathered by the AFAT-ATP API and will be sent to the AFAT frontend so that the aggregator
user can visualize the results in a comprehensive and user-friendly manner. The final step
(i.e. step 5) is for the aggregator user to understand the results and if s/he is interested in
further elaborating them, then s/he can optionally select to store them in the central DB in
order to be able to retrieve, visualize and possibly compare them with other results in the
future.

38 More technical details about the steps depicted in Figure 29 are provided in FLEXGRID D6.2.

68

Figure 29: Sequence diagram for communication among ATP frontend, AFAT backend and central

database

69

6 Conclusions and next steps
Conclusively, during the next months, FLEXGRID consortium will elaborate on the data
modeling work presented in this deliverable towards delevering the 1st version of FLEXGRID
ATP in Month 24, which corresponds to project’s milestone #8 “Release of the first integrated
FLEXGRID system prototype”.

During the Period 1 review meeting, which will take place on 22nd June 2021, the FLEXGRID
consortium will demonstrate the first algorithm that is integrated in FLEXGRID ATP. In other
words, the ESP user will be able to fill in all simulation parameters, execute the algorithm and
after the algorithm’s run, the results will be automatically shown in the FLEXGRID ATP. For
this purpose, the first REST API server and REST API client will be developed and the
communication with the central FLEXGRID database will be demonstrated, too. After M21, a
similar S/W integration process will be followed for all UCS and thus algorithms. Once a new
algorithm has been exhaustively tested and validated at TRL 3 by a research partner in the
context of WP3, WP4 and WP5, the next step will be the S/W integration phase, which is
ETRA’s main responsibility. Two rounds of S/W implementation and integration will take
place in order to timely identify any possible technical problems and apply pre-agreed
contingency measures.

As also depicted in the figure below, the delivery of “alpha” version of FLEXGRID ATP is
scheduled for M24, while the “beta” version is expected to take place in M33.

Figure 30: Current FLEXGRID project’s timeline schedule (MS 6 has been accomplished)

	Table of Contents
	List of Figures and Tables
	List of Figures
	List of Tables

	Document History
	Executive Summary
	1 Introduction
	1.1 Purpose of the document
	1.2 Scope of the document
	1.3 Research and S/W implementation methodology

	2 FLEXGRID x-DLFM architectures
	2.1 No-DLFM architecture - benchmark
	2.2 Reactive DLFM (R-DLFM) architecture
	2.3 Proactive DLFM architecture
	2.4 Interactive DLFM architecture

	3 Data model for the FMO and DSO user’s frontend and FMCT backend
	3.1 UCS 1.1 – DLFM clearing for the active power (energy) product
	3.1.1 Proposed algorithm to integrate in FMCT
	3.1.2 Algorithmic inputs and outputs and FMO/DSO frontend ideas
	3.1.3 UML diagrams

	3.2 UCS 1.2 – DLFM clearing for the active power reserve (up/down) product
	3.2.1 Proposed algorithm to integrate in FMCT
	3.2.2 Algorithmic inputs and outputs and FMO/DSO frontend ideas
	3.2.3 UML diagrams

	3.3 UCS 1.3 – DLFM clearing for the reactive power reserve (up/down) product
	3.3.1 Proposed algorithm to integrate in FMCT
	3.3.2 Algorithmic inputs and outputs and FMO/DSO frontend ideas
	3.3.3 UML diagrams

	3.4 Sequence diagram for communication between ATP frontend and FMCT backend

	4 Data model for the ESP user’s frontend and FST backend
	4.1 UCS 2.1 – Minimize ESP’s Operational Expenditures (OPEX)
	4.1.1 Proposed algorithm to integrate in FST
	4.1.2 Algorithmic inputs and outputs and ESP frontend ideas
	4.1.3 UML diagrams for UCS 2.1

	4.2 UCS 2.2 – Minimize ESP’s Capital Expenditures (CAPEX)
	4.2.1 Proposed algorithm to integrate in FST
	4.2.2 Algorithmic inputs and outputs and ESP frontend ideas
	4.2.3 UML diagrams for UCS 2.2

	4.3 UCS 2.3 – Maximize ESP’s stacked revenues
	4.3.1 Proposed algorithm to integrate in FST
	4.3.2 Algorithmic inputs and outputs and ESP frontend ideas
	4.3.3 UML diagrams for UCS 2.3

	4.4 UCS 4.4 – PV and Market price forecasting
	4.4.1 PV generation forecasting
	4.4.1.1 Proposed algorithm to integrate in FST
	4.4.1.2 Algorithmic inputs and outputs and ESP frontend ideas

	4.4.2 Market price forecasting
	4.4.2.1 Proposed algorithm to integrate in FST
	4.4.2.2 Algorithmic inputs and outputs and ESP/aggregator frontend ideas

	4.4.3 UML diagrams for UCS 4.4

	4.5 Sequence diagram for communication between ATP frontend and FST backend

	5 Data model for the aggregator user’s frontend and AFAT backend
	5.1 UCS 4.1 – Manage a FlexRequest
	5.1.1 Proposed algorithm to integrate in AFAT
	5.1.2 Algorithmic inputs and outputs and aggregator frontend ideas
	5.1.3 UML diagrams

	5.2 UCS 4.3 – Create a FlexOffer
	5.2.1 Proposed algorithm to integrate in AFAT
	5.2.2 Algorithmic inputs and outputs and aggregator frontend ideas
	5.2.3 UML diagrams

	5.3 UCS 4.2 – Manage a novel B2C flexibility market
	5.3.1 Proposed algorithm to integrate in AFAT
	5.3.2 Algorithmic inputs and outputs and aggregator frontend ideas
	5.2.3 UML diagrams

	5.4 Sequence diagram for communication among ATP frontend and AFAT backend

	6 Conclusions and next steps

